В качестве примера врожденной идеи Декарт приводит существование Бога. При этом он использует комбинацию двух известных доказательств существования: антропологического (не будет же Бог обманывать, внушая веру в себя) и космологическое (гармоничность мира есть проявление божественного предначертания). Обоснование бытия Бога необходимо Декарту для утверждения возможности истинности нашего познания: «Бог – не обманщик», значит, то, что мы постигаем «естественным светом» нашего разума, правильно применяя его, действительно истинно.
Из врожденных идей с помощью метода (который тоже является врожденной идей) можно получить любое новое знание. При помощи «естественного света» разума мы можем понять, что такое бытие, мышление, незнание, истина, вещь, длительность, движение, фигура и т. д., а также признать истинными положения типа: «свершившееся не может быть несовершенным», «две вещи, подобные одной и той же третьей, подобны также между собой» и т. д. Эти идеи и истины не порождены нами и не получены от внешних объектов – они представляют собой формы, в которых мы воспринимаем собственные мысли и через призму которых воспринимаем внешний мир.
Декарт, предвосхищая многие идеи кантовской философии, показывает, что мы объективно и рационально понимаем мир в той мере, в какой понимаем организацию и структуры своей познавательной способности, учитываем то, что сделано нашим интеллектом. Вдохновляясь строгостью математического познания, Декарт вводит понятие «простых вещей», вещей «абсолютнейших», которые не могут быть далее разложимы, делимы умом. «Вещи» в этом контексте у Декарта – исходные, элементарные идеи, из сочетания которых строится знание. «Говоря здесь о вещах лишь в том виде, как они постигаются интеллектом, мы называем простыми только те, которые мы познаем столь ясно и отчетливо, что ум не может их разделить на некоторое число частей, познаваемых еще более отчетливо».
Декарт использует геометрический (правильнее – аксиоматический) метод, формулируя несколько правил. Задачу следует разделить на более простые части, решить их по отдельности до конца, синтезировать это решение в общее представление:
«1. Не признавать истинным ничего, кроме того, что с очевидностью познается мною таковым, т. е. тщательно избегать поспешности и предубеждений и принимать в свои суждения только то, что представляется моему уму так ясно и отчетливо, что ни в коем случае не возбуждает во мне сомнения.
2. Разделять каждое из рассматриваемых мною затруднений на столько частей, на сколько возможно и сколько требуется для лучшего их разрешения.
3. Мыслить по порядку, начиная с предметов наиболее простых и легко познаваемых, и восходить мало-помалу, как по ступеням, к познанию наиболее сложных, допуская существование порядка даже среди тех, которые не следуют естественно друг за другом.
4. Составлять повсюду настолько полные перечни и такие общие обзоры, чтобы быть уверенным, что ничего не пропущено».
Видимая «простота» метода опирается на сложные философские допущения, предложенные Декартом. Руководствуясь ими, ученый приходит к своим математическим идеям. Вот как он сам описывает этот путь в «Рассуждении о методе»: «Мне не стоило большого труда отыскание того, с чего следует начинать, так как я уже знал, что начинать надо с самого простого и доступного пониманию; учитывая, что среди всех, кто ранее исследовал истину в науках, только математики смогли найти некоторые доказательства, т. е. представить доводы несомненные и очевидные, я уже не сомневался, что начинать надо именно с тех, которые исследовали они… Но я не имел намерения изучать на этом основании все отдельные науки, обычно именуемые математикой. Видя, что хотя их предметы различны, но все же они сходны между собой в том, что рассматривают не что иное, как различные встречающиеся в предметах отношения, я подумал, что мне необходимо лучше исследовать эти отношения вообще, мысля их не только в тех предметах, которые облегчали бы мне их познание, и никоим образом не связывая с этими предметами, чтобы тем лучше применить их потом ко всем другим, к которым они подойдут. Затем, приняв во внимание, что для изучения этих отношений мне придется рассматривать каждое из них в отдельности и лишь иногда запоминать или истолковывать их по несколько вместе, я подумал, что для лучшего рассмотрения их в отдельности я должен представить их себе в виде линий, потому что я не находил ничего более простого, что я мог бы представить себе более отчетливо в своем воображении и ощущении. Но для того, чтобы лучше удержать их в памяти или сосредоточить внимание сразу на нескольких, надо выразить их какими-то возможно более краткими знаками. Благодаря такому способу я мог заимствовать все лучшее в геометрическом анализе и в алгебре и исправить все недостатки одного при помощи другой».