Первым греком, который стал известен своими математическими открытиями, был Фалес Милетский. Его, как и Пифагора, нередко называют родоначальником античной науки. Диоген Лаэртий пишет, что в молодости Фалес совершил поездку в Египет, где обучался астрономии и геометрии у жрецов. Разные авторы приписывают Фалесу доказательство нескольких теорем геометрии:
1 — диаметр делит круг пополам;
2 — в равнобедренном треугольнике углы при основании равны;
3 — вертикальные углы, образованные двумя пересекающимися прямыми, равны;
4 — треугольники равны, если равны два их угла и сторона.
Можно заметить, что эти теоремы вполне могли бы подтверждаться эмпирически, и их справедливость при взгляде на соответствующий чертеж очевидна. Тем не менее Фалес посчитал необходимым доказать их логическим путем. И в результате стал основателем дедуктивного метода в науке. Важно еще и то, что ни египтяне, ни вавилоняне в те времена не имели такого понятия, как величина угла. То есть смело можно считать, что теоремы, приписываемые Фалесу, не были заимствованы у ученых Востока.
Как мы уже писали, биографы называют Фалеса одним из учителей Пифагора. В достоверности этой информации можно сомневаться, но то, что Пифагор был знаком с математическими изысканиями Фалеса, сомнений не вызывает.
Пифагор открыл математические закономерности в музыке. Он обнаружил, что высота звука зависит от длины струны или флейты. Считается, что Пифагор определил отношения этих длин для трех гармонических интервалов. Если длины струн соотносятся как 2/1, то звуки, издаваемые ими, будут отличаться на октаву. Соотношению 3/2 соответствует квинта, 4/3 — кварта. Эксперимент, который помог обнаружить эти закономерности, производился с помощью монохорда. Этот однострунный музыкальный инструмент представлял собой струну, натянутую на линейку, имеющую 12 делений. Пифагор обнаружил, что свободная струна звучит созвучно половине струны (октава). Подобным образом были открыты и два других интервала. Возможно, это открытие основывалось на арифметической теории пропорций, начала которой, следовательно, были заложены ранее и, скорее всего, им же. Или же наоборот, теория пропорций стала непосредственным следствием музыкальных экспериментов. Важность этих опытов состоит не только и даже не столько в обнаружении тех или иных математических закономерностей. Здесь важнее то, что они стали, пожалуй, первыми экспериментами, продемонстрировавшими связь физических законов с законами математики.
Непосредственное указание на то, что именно Пифагор был создателем теории пропорций, есть и в комментариях к «Началам» Евклида Прокла — греческого философа и ученого V века нашей эры. Несмотря на то что Прокла от Пифагора отделяет 10 веков, к его информации можно относиться с большим доверием. Дело в том, что упомянутые комментарии содержат «Каталог геометров», составленный по материалам Евдема Родосского — философа IV века до нашей эры. Вот цитата из этого каталога:
«…Пифагор преобразовал философию геометрии, сделав ее формой образования свободного человека, рассматривая ее начала абстрактным образом и исследуя теоремы с нематериальной, интеллектуальной точки зрения. Он же открыл теорию пропорций и конструкцию космических тел (правильных многогранников, см. ниже)».
Пифагор знал три средние величины:
среднее арифметическое:
среднее геометрическое:
среднее гармоническое:
Вполне вероятно, что именно он придумал все эти величины или какие-то из них.
Исследования математических аспектов музыки, по свидетельствам Ямвлиха, привели Пифагора к открытию так называемой «музыкальной» пропорции:
То есть отношение а к среднему арифметическому а и b равно отношению среднего гармонического к b.
В частном виде, при экспериментировании с монохордом можно было получить такое выражение: 12/9 = 8/6. При этом 9 — среднее арифметическое 12 и 6, а 8 — среднее гармоническое. Дальше, скорее всего, были обнаружены и такие равенства: 2/1 = 3/2:3/4. Численно был выражен целый тон, как разница между квинтой и квартой: 3/2:4/3 = 9/8. Естественно, что еще Пифагор и его ученики придали обнаруженным закономерностям, кроме научного, и мистический смысл. Числа, с помощью которых можно было выразить музыкальные интервалы, составили тетрактиду. Вот пример того, как вместе с математической теорией музыки могла развиваться и теория пропорций.