На эффектах и парадоксах теории относительности построено множество сюжетов научно-фантастических романов и фильмов. Особенно понравилась романистам идея о замедлении времени, и читатель наверняка может вспомнить какой-нибудь вариант истории о космическом корабле, вернувшемся на Землю (которую условно можно считать неподвижной) с космонавтом, постаревшим всего на несколько лет, в то время как все его сверстники стали глубокими старцами или уже умерли. Кстати, величину этого эффекта можно рассчитать по довольно простым формулам (например, при скорости, равной 99% от скорости света, время в корабле будет течь в семь раз медленнее, чем на Земле, так что после 10-летнего полета космонавты действительно увидят родную планету постаревшей на 70 лет). В общем случае, при приближении к скорости света в движущейся системе замедляется время, увеличивается вес объектов и их длина.
Эйнштейн пытался представить и описать движение с релятивистскими скоростями в случае электронов (самых маленьких субатомных частиц, вращающихся вокруг атомного ядра), что представляет особый интерес, поскольку электроны можно легко ускорять различными методами. Из его уравнений следовало, что время в собственной системе отсчета электрона при возрастании скорости начинает замедляться, в результате чего ускорение (при той же действующей силе) уменьшается, и это эквивалентно «утяжелению» электрона, т. е. увеличению его массы. Рассуждения подобного типа привели Эйнштейна еще в 1905 г. к фундаментальному открытию, что масса тела является мерой содержащейся в нем энергии, что и выражает ставшая знаменитой и общеизвестной формула Е = тс2, где с означает скорость света, а Е – полную энергию тела с массой т.
Это простое уравнение в действительности имеет весьма глубокий смысл, поскольку наглядно демонстрирует, что энергия и масса (которые всегда считались совершенно разнородными понятиями) являются разными представлениями одной и той же сущности. Выделяя или поглощая энергию, материальные объекты просто переводят эту сущность из одной категории в другую во всех процессах, независимо от того, идет речь о горении куска угля, любовных играх или взрывах Сверхновых.
Приведенная выше формула и ее применение кажутся достаточно простыми и понятными, но гораздо более сложными и парадоксальными были рассуждения Эйнштейна о различных эффектах, возникающих при приближении к световому порогу скорости, поскольку для их объяснения ученый пользовался необычной смесью из здравого смысла, собственных интуитивных озарений и весьма сложных математических уравнений. Однако еще более сложной для восприятия широкой общественности оказалась обобщающая концепция пространства-времени, которая вытекала из предлагаемой Эйнштейном теории.
Учет времени в качестве четвертой координаты означает фактически, что мы не можем указать положение какого-либо тела в пространстве без указания точного времени измерения, и обратно. Ни одну пару событий в мире нельзя считать одновременной, поскольку все они разделены существованием порогового значения скорости, неким общим ограничением на передачу информации, которое относится ко всем видам электромагнитного излучения. Никакие командиры кораблей с релятивистскими скоростями никогда не узнают, насколько синхронны залпы их лазерных излучателей, поскольку каждый будет пользоваться собственной системой отсчета, собственными критериями времени и расстояния.
Математически положение тел в четырехмерном пространстве-времени можно описывать столь же легко и удобно, как координаты точки на листе обычной миллиметровки, однако это обстоятельство не облегчает понимания теории, поскольку почти все мы привыкли к обычному, трехмерному восприятию пространства (в котором, как нам кажется, и проходит наша жизнь). Поэтому читателю лучше не напрягать свое воображение, а просто попытаться понять «принципы действия» предлагаемой теории.
О наглядности физических моделей или теорий следует сказать хотя бы несколько слов, поскольку именно наглядность была характерной особенностью классических представлений. Все мы, например, привыкли воспринимать гравитацию в качестве силы, которая заставляет яблоко падать на голову юного Исаака Ньютона в соответствии с общеизвестной гравюрой в школьных учебниках. Позднее историки выяснили, что история с яблоком является легендой, возникшей через много лет после смерти Ньютона, но она до сих пор наглядно демонстрирует детям действие закона всемирного тяготения и прекрасно запоминается. Строго говоря, никто не понимает механизма гравитации, которая столетиями остается загадкой, несмотря на приятную и столь понятную всем картинку с яблоком (Эйнштейн безуспешно размышлял о гравитации несколько десятков лет, но и ему не удалось создать точную теорию этого явления).