Выбрать главу

Все атомы и ядра состоят из определенного количества протонов и нейтронов. Сколько протонов находится в ядре, столько же электронов обращается вокруг ядра в электронных оболочках. Поэтому положительный заряд протонов ядра в точности компенсируется отрицательным зарядом электронов. Собственно говоря, дело обстоит еще проще. Если быть точным, то атомы состоят не из трех типов элементарных частиц: протонов, нейтронов и электронов, а всего из двух. В атомных ядрах протоны и электроны могут превращаться в нейтроны. За пределами атомного ядра нейтрон примерно через 17 минут распадается на протон и электрон. Поэтому можно считать, что окружающий нас мир во всем его многообразии построен только из протонов и электронов. Сумма количества протонов и нейтронов в атомном ядре называется массовым числом ядра, а количество протонов — зарядом ядра. Таким образом, атом водорода имеет массовое число 1 и заряд ядра 1. У гелия массовое число равно 4, а заряд ядра 2. Наиболее распространенный тип атомов железа имеет массовое число 56, а заряд ядра 26. Заряд ядра показывает также, сколько электронов должно обращаться вокруг ядра, чтобы атом был полностью электрически нейтральным. Строение электронных оболочек определяет химические свойства веществ. Вещества с различными зарядами ядра различаются по химическим свойствам из-за того, что у атомов этих веществ разные электронные оболочки. Атомы с одинаковым зарядом ядра, но с различным числом нейтронов, не различаются по химическим свойствам. Они различаются только массовым числом. Такие атомы называются изотопами одного и того же элемента. Так, например, кроме обычного водорода существует так называемый тяжелый водород. В ядре этого изотопа кроме одного протона есть еще и один нейтрон. Такой изотоп водорода называется дейтерием. Он в небольших количествах встречается в природе.

Хотя кусок железа и газообразный водород в воздушном шарике не имеют на первый взгляд между собой ничего общего, однако атомы и того и другого элемента построены из одних и тех же протонов и электронов. Если бы мы могли взять 56 атомов водорода и расположить 56 протонов и 56 электронов этих атомов в нужном порядке: из 30 электронов и 30 протонов сделать 30 нейтронов, объединить эти нейтроны с оставшимися 26 протонами в атомное ядро, и построить вокруг этого ядра электронную оболочку из остальных 26 электронов, то мы получили бы из водорода атом железа.

Если бы мы могли взять 4 атома водорода, образовать из двух электронов и двух протонов два нейтрона, объединить их с двумя оставшимися протонами в атомное ядро, то мы получили бы ядро с массовым числом 4 и зарядом 2, вокруг которого смогли бы обращаться два оставшихся электрона. При этом из четырех атомов водорода мы получили бы атом гелия. В результате такого процесса должна освобождаться энергия. Однако объединить ядра разных атомов друг с другом не так-то просто.

Артур Эддингтон и источник энергии звезд

Сэр Артур Эддингтон занимал знаменитую кафедру астрономии в Кембриджском университете («Plumian Professorship»). В 1926 г. он опубликовал свою книгу «The Internal Constitution of the Stars» («Внутреннее строение звезд»). В этой книге были блестяще изложены представления того времени о физических основах процессов, происходящих в звездах. Сам Эддингтон внес существенный вклад в формирование этих представлений. Еще до него в принципе было ясно, как функционируют звезды. Однако не было точно известно, откуда берется энергия, которая поддерживает излучение звезд.

Уже тогда было понятно, что богатое водородом звездное вещество может быть идеальным источником энергии. Ученые знали, что при превращении водорода в гелий освобождается столько энергии, что Солнце и другие звезды могут светить миллиарды лет. Таким образом, было ясно, что если бы удалось разобраться, в каких условиях идет слияние атомов водорода, то был бы найден великолепный источник энергии звезд. Однако наука тех лет была еще очень далека от того, чтобы осуществить превращение водорода в гелий в экспериментальных условиях.

Астрофизикам того времени оставалось только верить, что звезды представляют собой гигантские ядерные реакторы. Действительно, нельзя было себе представить никакого другого процесса, который мог бы обеспечить энергией излучение Солнца в течение миллиардов лет. Наиболее последовательно это мнение выразил Эддингтон. Он исходил из многочисленных и многократно повторенных измерений светимости звезд, которые проводили астрономы-наблюдатели. Эддингтон писал в своей книге: «Измерения количества ядерной энергии, освобождающейся в недрах звезд, являются одним из важнейших результатов астрономических наблюдений, и если в моей книге все правильно, то тогда мы хорошо себе представляем, каковы должны быть плотность и температура вещества, чтобы могли происходить эти процессы». К сожалению, физики того времени считали, что атомные ядра в звездах не могут реагировать друг с другом.