Причина этого заключается в одном из свойств атомных ядер. Ядра тяжелых элементов (например, урана) при делении выделяют энергию, а в результате деления появляются ядра, масса которых близка к атомной массе более легкого железа. При соединении легких элементов выделяется энергия, и в результате получаются ядра, масса которых ближе к массе тяжелого железа. Только из ядер железа нельзя получить энергию ни путем деления, ни путем синтеза.
Что же произойдет, когда в нашей массивной звезде процессы термоядерного синтеза зайдут так далеко, что в центре звезды образуется сферическая область, состоящая целиком из газообразного железа (рис. 11.1, а)? Ядра железа могут захватывать электроны из окружающего газа. При этом центральная область звезды сокращается в объеме. Дело в том, что равновесие здесь поддерживается противодействием силы тяжести и газового давления. Газовое давление обусловлено в основном электронами. Когда электроны поглощаются атомными ядрами, сила тяжести берет верх. В конце концов центральная область звезды, состоящая из газообразного железа, «схлопывается». Считают, что этот процесс начинается, когда масса центрального железного ядра звезды достигает 1,5 солнечной. Сила тяжести так плотно прижимает друг к другу все составные «кирпичики» атомных ядер, что в конце концов все протоны и электроны объединяются в нейтроны, и все вещество в центре звезды оказывается состоящим только из нейтронов. Плотное газообразное железное ядро звезды превращается в нейтронную звезду. При этом превращении выделяется невообразимое количество энергии, которое, по всей видимости, разметает в пространство внешнюю оболочку звезды. Звезда взрывается, а нейтронное ядро остается в облаке разлетающихся с огромной скоростью останков. Жизнь звезды завершилась взрывом сверхновой.
Рис. 11.1. Возможные стадии, предшествующие взрыву сверхновой. Слева: звезда с массой больше десяти солнечных. В ее недрах из водорода, который до сих пор образует ее внешнюю оболочку, образовались более тяжелые элементы, располагающиеся концентрическими слоями вокруг ядра, состоящего из плотного газообразного железа. Центральная область подобной звезды, находящейся на поздней стадии эволюции, неустойчива; возможен коллапс. При этом высвобождается такое количество энергии, что вся внешняя оболочка с большой скоростью разлетается в пространство. Справа: в недрах звезды образовалось углеродное ядро, которое аналогично белому карлику. Масса ядра-белого карлика — возрастает, поскольку на его поверхности гелий превращается в углерод. Когда масса белого карлика достигает предела Чандрасекара, происходит коллапс и оболочка разлетается. Оба рисунка схематичны, масштаб не соблюден.
В Чикаго и Ливерморе (шт. Калифорния) в США, а также и у нас в Мюнхене этот процесс пытались смоделировать на компьютере. Решение здесь оказывается гораздо более сложным, чем в случае обычных медленных этапов эволюции. Оно, однако, и чрезвычайно поучительно, так как можно предположить, что в ядерных реакциях, происходящих при взрыве, образуются многие химические элементы из встречающихся в природе. Вероятно даже, что все элементы тяжелее гелия образуются внутри звезды либо в ходе спокойного горения, либо в короткий миг взрыва сверхновой.
Все эти рассуждения относятся к самым массивным звездам. Звезды с массами меньше десяти солнечных в своей эволюции не достигают фазы образования железного ядра: они еще раньше сталкиваются с проблемами, из-за которых в конечном счете, вероятно, происходит взрыв сверхновой. Причина здесь состоит в том, что внутри звезды, как мы видели в гл. 7, образуется белый карлик. Белые карлики обладают одним весьма замечательным свойством, которое связано с их внутренним равновесием.
Мысленный эксперимент с белым карликом
Своим существованием мы обязаны равновесию между силой тяжести и силой давления в Солнце и в Земле. В общем и целом это равновесие надежно. Если в мысленном эксперименте мы чуть-чуть сожмем Солнце, то хотя из-за увеличения плотности сила тяжести возрастет, давление внутри Солнца будет при сжатии возрастать быстрее, чем сила тяжести. Поэтому Солнце будет стремиться вернуться к своему прежнему состоянию. Аналогично, если с помощью какой-то внешней силы попытаться заставить Солнце увеличить свой объем, то сила тяжести немного уменьшится, так как при увеличении расстояния между материальными частицами они слабее притягивают друг друга. Но давление будет уменьшаться еще быстрее, чем сила тяжести, и поэтому Солнце опять будет стремиться к своему прежнему состоянию. Мы уже сказали, что на это равновесие можно положиться; ученые называют равновесие такого рода устойчивым. Не все звезды, однако, находятся в состоянии устойчивого равновесия. Белые карлики, например, находятся в равновесии, но это равновесие легко может быть нарушено.