Сложность стыковочных шпангоутов заставила усиливать их при помощи сварных ребер. Сварочные швы — это обычно самое слабое место, особенно при многократных циклических нагружениях. Нам пришлось решать все проблемы в короткие сроки под прессингом малого и большого руководства. Я никогда не забуду эти напряженные месяцы 1977 года, когда готовили к полету первый двухпричальный ДОС. Помню, как еще весной мы обратились за помощью к специалистам по нагрузкам и просили поделиться своими «запасами». Наши теоретики работали под руководством Г. Дегтяренко. Но куда там! Не в правилах их начальника было давать спуску другим.
Главный идеолог ДОСов К. Феоктистов неожиданно занял совершенно другую позицию: если ребра ломаются, давайте уберем их совсем. Дело дошло почти до курьеза: чтобы доказать авторитетному проектанту абсурдность идеи, мы с С. Темновым принесли в жертву один из наших агрегатов. Когда ребра отрезали и собрали частичную установку, я предупредил Станислава: принять меры повышенной безопасности и не подпускать Героя близко к обреченному стыку. Однако опасения были напрасными — космонавт сказал, что в наземном эксперименте он нам доверяет.
Позже, когда «Салют-6» уже летал на орбите, испытания продолжались. Нам пришлось столкнуться с тем, чем занимаются создатели самолетов. ИЛы и ТУ также летали в воздухе, а их братья, как рабы, прикованные к Земле, трудились, махали крыльями на испытательных стендах в знаменитом ЦАГИ. Прочнисты нашего аналога ЦАГИ, ЦНИИМаша, в той эпопее помогали нам идейно, задавая нормы усталостной прочности.
Чего мне удалось добиться, так это рассмотреть проблему с другой стороны: каковы действительные нагрузки на орбите, каков коэффициент динамичности, например, в случае, когда космонавт бегает на орбите? По нашей инициативе подготовили и провели эксперимент под названием «Резонанс». Это название выбрали не случайно. Дело в том, что динамические нагрузки определяются не только амплитудой, но и частотами, их близостью к резонансным частотам. Когда станция залетала, космонавты стали главными экспериментаторами: они прыгали, возбуждая станцию, которая начинала колебаться с собственной частотой, а датчики регистрировали эти колебания. Информация сбрасывалась на Землю, где ее анализировали настоящие специалисты. Эксперимент позволил уточнить расчетные характеристики конструкции, в том числе внутренний коэффициент демпфирования, который определял затухание колебаний. Последнее было очень важно потому, что демпфирование служит, так сказать, внутренним предохранителем при раскачивании конструкции. На Земле опасались, что космонавты будут бегать именно с частотой, близкой к резонансу. Поэтому в качестве еще одного предохранителя установили метроном, а в бортовой конструкции записали, как шагать, бегать и прыгать.
Откровенно говоря, я надеялся, что результаты эксперимента помогут нашим конструкциям. Получилось не совсем так. Ученые–инженеры усилили свои позиции: появились лишь инструкции для космонавтов.
Справедливости ради следует сказать, что, по рассказам самих космонавтов, орбитальная станция действительно под их ногами ходила ходуном, а крылья СБ начинали махать с метровой амплитудой. Это мне поведал Г. Гречко еще в 1976 году. На «Салюте-4» он старался поменьше бегать, а больше заниматься научными экспериментами. Нарушение режима на орбите повлияло на его здоровье, и в дополнение к этому он получил нагоняй от самого Глушко. Рекорды всегда давались трудно.
В целом это очень хитрая штука — рассчитывать и эксплуатировать конструкцию с учетом резонансных колебаний. Здесь всегда присутствуют и действительные опасности, и перестраховка. Это была непростая, но полезная наука. В будущем она помогла избавиться от ряда недостатков и усовершенствовать стыковочные агрегаты. В конце концов мы отказались от сварки и сделали корпуса полностью фрезерованными. Это произошло уже в 80–е годы. Тогда нам помог общий научно–технический прогресс, который наметился в стране, особенно — ивановские станки с программным управлением, которые закупил наш завод под руководством И. Хазанова.
К осени 1977 года, преодолев все трудности, мы были готовы отправить космонавтов в длительный полет. В целом программа ДОСов выполнялась успешно. Однако начало было опять очень трудным, почти драматическим.
Как мог, я описал то, чем нам пришлось заниматься, чтобы обеспечить длительные космические полеты. Это лишь очень небольшая доля того, что пришлось сделать специалистам НПО «Энергия», нашим коллегам из знаменитого Института медико–биологических проблем (ИМБП) под руководством О. Газенко и А. Григорьева и многим нашим смежниками, чтобы космонавты смогли летать в космосе сначала по несколько месяцев, затем по году. В 1983 году В. Поляков уже на ОК «Мир» установил абсолютный рекорд, доведя его до 437 суток.
Наш генеральный В. Глушко очень любил рекорды. В эти годы расцвел талант проектанта К. Феоктистова. Возглавлял всю гигантскую практическую работу главный конструктор ДОСов Ю. Семёнов. Эти три больших руководителя, каждый по–своему, порой требовали от нас, казалось, невозможного, но это часто приносило уникальные результаты.
Эти достижения советской космонавтики стали непревзойденными.
Вся наша техника и методы стали мировым достоянием тоже много лет спустя, когда американские специалисты, осознавшие и оценившие эти свершения, пришли в наш «Мир», чтобы воспринять этот опыт и готовиться к старту в XXI век.
3.3 Гибридный шестистепенной испытательный стенд
Гибридный — здесь это означает компьютерно–математический и одновременно реально–физический, «железный». Шестистепенной — это значит пространственный, с шестью степенями свободы, универсальный.
Механизмы, технические системы, которые летают в космос, — это лишь видимая вершина айсберга. Чтобы создать эту технику, нужна обширная и разнообразная материально–испытательная база, как говорят инженеры–разработчики. Это тот фундамент, на котором стоит космическая техника.
К середине 70–х, работая над стыковкой уже в течение доброго десятка лет, мы постепенно построили нашу наземную базу и стремились усовершенствовать ее. Как показала практика, одну из самых больших трудностей вызывало воспроизведение на Земле стыковки многотонных космических кораблей с еще более тяжелыми орбитальными станциями. Как уже упоминалось, мы опробовали разные методы. Американцы продемонстрировали нам на практике новый гибридный метод. Он оказался эффективным, но далеко не простым. Под популярным тогда в стране лозунгом — «Мы тоже можем это сделать!» — было принято решение создать и освоить эту хитроумную технику у себя, опираясь полностью на своих специалистов, на отечественную технологию и электронную базу.
В отличие от многих престижных одноразовых свершений компьютеризированная, мощная (многосоткиловаттная) и одновременно прецизионная электронно–механическая система вошла в строй и заработала по–настоящему на долгие годы. «Конус» сыграл выдающуюся роль не только в советской космической технике — в конце века он стал воспроизводить на Земле то, что составляло технический интерфейс международного сотрудничества в космосе.
Проблема, как воспроизвести последний участок сближения, первый удар и дальнейшее взаимодействие двух многотонных КА, с самого начала работ над стыковкой относилась к одной из самых сложных. Для воспроизведения на Земле стыковки в космосе разработали и использовали несколько подходов: проводили теоретический анализ и строили испытательные стенды. Для анализа создавали математические модели, которые описывали процесс относительного движения и динамику взаимодействия. Для моделирования использовались вычислительные машины. Для экспериментальной отработки строили механические стенды с полномасштабными моделями стыкуемых кораблей и станций.
Американцы решали проблему комбинированным, гибридным путем, соединив математическую модель с измерителем силы соударения стыковочных агрегатов, и их взаимодействие воспроизводили при помощи двух платформ: подвижной — на шести следящих приводах и неподвижной — установленной на шести силовых датчиках.