Помимо математики и механики, теория Ляпунова используется еще и в химии, термодинамике, синергетике и многих других науках. На ней базируется вся современная техника: тяжелое, общее, а в недавнем прошлом – и среднее машиностроение, судо-, авиа-, автомобилестроение, архитектура, строительство сооружений и т. д.
Сегодня немыслимо что-либо конструировать, не определяя зависимость режима работы изделия от величины допусков на его изготовление и от воздействия незначительных возмущающих сил при эксплуатации, поскольку именно они влияют в первую очередь на динамические характеристики современных двигателей, на верность траектории космических аппаратов, на безопасность транспорта, на точность попадания снарядов и ракет.
Устойчивость самолета, то есть его способность автоматически, без вмешательства летчика, возвращаться в исходное, начальное положение во время полета, если какая-либо внешняя причина вывела его из этого положения, является одним из главных технических требований при конструировании летательного аппарата. Задача о динамической устойчивости полета самолета решается как частный случай общей задачи механики об устойчивости движения по Ляпунову.
При строительстве зданий теория устойчивости позволяет получать множество расчетных моделей в связи с появлением новых материалов, усложнением воздействий сейсмических, циклических, динамических и других нагрузок.
Теория равновесия Ляпунова положена в основу автоматического управления всеми производственными процессами и телеуправляемыми системами.
Казалось бы, зачем к строительным и инженерным работам притягивать такую непростую науку, оперирующую абстрактными символами и дающую подчас ненужную на практике точность? Дело в том, что другие, более грубые подходы не удовлетворяют современным требованиям к объектам в вопросах устойчивости их движения, да их, по сути, и нет. Физику и технику вполне устраивает детище Ляпунова.
Свое учение математик создавал в течение 7 лет, с 1885 по 1892 г. Возглавляя кафедру механики Харьковского университета, приват-доцент тащил на себе все преподавание механики, составление образцовых курсов и руководств, практические занятия со студентами, а затем до 5 утра еженощно корпел над вопросами общей теории устойчивости.
Отказываясь на протяжении 4 лет от предложений получить докторскую степень даже за малую часть того, что сделал, довольствуясь скромным приват-доцентским содержанием в 1200 рублей в год, Александр Михайлович выпустил свой фундаментальный 261-страничный труд лишь после тщательнейшей его отделки в издательстве Харьковского математического общества.
Теория устойчивости равновесия дала несравненно более точные решения, чем существовавшие до нее. До работ Ляпунова вопросы об устойчивости решались по первому приближению: все нелинейные члены уравнений отбрасывались, хотя такой способ линеаризации уравнений движения не всегда был законным.
Диссертация и последующие работы Ляпунова в области устойчивости содержат целый ряд фундаментальных результатов в теории обыкновенных дифференциальных уравнений – как линейных, так и нелинейных.
Несколько слов о семействе Ляпуновых, бывшем некогда одним из самых знаменитых в России. Ляпуновы происходили от галицкого князя Константина Ярославича, младшего брата Александра Невского. Михаил Васильевич, отец математика, был астрономом, получившим известность своими исследованиями туманности Ориона, директором Демидовского лицея в Ярославле. Старший брат Александра Михайловича Сергей был известным русским композитором, пианистом и дирижером. Младший брат Борис – филологом, профессором Одесского университета.
ТЕОРИЯ КОРАБЛЯ КРЫЛОВА
Математик, кораблестроитель, педагог, заслуженный деятель науки и техники, академик, кавалер ордена Святого Станислава 1-й степени и трех орденов Ленина, лауреат Сталинской премии, Герой Социалистического Труда, Алексей Николаевич Крылов (1863–1945) написал более 300 работ по математике и механике, физике и астрономии, по теории магнитных и гироскопических компасов, баллистике и теории стрельбы, гидродинамике и геодезии и т. д. Главным трудом ученого, признанным во всем мире, стала его теория (мореходные качества) корабля.
Кораблестроители и математики спорят до сих пор, кто Крылов – корабел или математик. Всех поражают простота и ясность его доказательств и решений, их академическая строгость, все рады называть ученого «своим». Труды Крылова много лет обеспечивали отечественной кораблестроительной науке приоритет в мире. Сам Алексей Николаевич никогда не считал себя «чистым» математиком и всегда ратовал за приложение этой науки к различным вопросам морского дела. Чутко ощущая запросы времени, Крылов предпочтение отдавал не теории, а практике. К примеру, написав много работ по теории артиллерийской стрельбы, ученый разработал для тренировки наводчиков и т. н. «прибор Крылова». Он изобрел машину для решения дифференциальных уравнений, как эксперт участвовал при постройке моста Петра Великого и как инженер в строительстве Володарского моста в Петербурге (Ленинграде) и т. д. При этом математик не держался за «место» или за направление исследований. Скажем, в 1916–1921 гг. он вовсе занимался не морским, даже не земным, а небесным делом – возглавлял Главную физическую обсерваторию и Главное военно-метеорологическое управление.