Выбрать главу

А.Н. Колмогоров

В 1933 г. Колмогоров опубликовал на немецком языке одну из главных своих работ – «Основные понятия теории вероятностей» (на русском – в 1936 г.). По мнению профессора В.М. Тихомирова, это, «наверное, самое известное произведение Андрея Николаевича, оказавшее столь же огромное влияние на все дальнейшее развитие этой науки, как труды Я. Бернулли и Лапласа».

К тому времени ученого знал весь математический мир. Ведь в него Андрей вступил очень рано даже по меркам математики. Любимцем математики он оставался всю свою жизнь. Да и не только одной царицы наук – скажем, за классические работы по турбулентности математик выдвигался на Нобелевскую премию по физике. Среди ученых ходит афоризм И.М. Гельфанда: «Математика – это марафон». Колмогоров, по мнению коллег, был не только «марафонцем», но и «спринтером», в считаные дни с потрясающей скоростью даже в 80 лет решавший проблемы, с которыми другие ученые бились годами.

Первую работу, снискавшую мировую известность, о «ряде Фурье, расходящемся почти всюду», Колмогоров создал в 19 лет, а к 22 годам был уже автором полутора десятков печатных трудов по теории функции действительного переменного.

Еще на четвертом курсе МГУ математик занялся теорией вероятностей – разделом математики, изучающим закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Начал Андрей с закона больших чисел, представляющего собою «общий принцип, в силу которого совокупное действие большого числа случайных факторов приводит, при некоторых весьма общих условиях, к результату, почти не зависящему от случая». Над законом в свое время бились лучшие математики мира – Г. Больцман, Р. Мизес, А. Ломницкий и др. Все их попытки получить наиболее общие условия применимости этого закона к последовательности случайных величин оказались тщетными. Пальму первенства они и их последователи отдали аспиранту МГУ Колмогорову, который очень удачно использовал хорошо развитые (в том числе и им самим) методы теории функций действительного переменного. Это случилось в 1926 г. В 1930 г. увидело свет еще одно центральное исследование математика – «Об аналитических методах теории вероятностей».

В книге «Основные понятия теории вероятностей» Андрей Николаевич сформулировал в законченном виде аксиоматику (схему логического обоснования) теории: концепцию вероятности, всевозможные ее интерпретации, сферы применимости и т. д. Прекрасное знание многих областей математики – теории множеств, теории интеграла, теории функций и др. – позволило ученому сформулировать простую систему аксиом, давшую этой науке строгий вид нового раздела математики. Аксиоматику Колмогорова, применимую в самых разнообразных областях естественных, технических и гуманитарных наук, называют еще «моделью Колмогорова».

«Значение монографии А.Н. Колмогорова определяется не только предложенной в ней схемой (ставшей универсально принятой) логического обоснования математической теории вероятностей. Ее роль также и в том, что содержащиеся в ней новые концепции, понятия и результаты (такие как условное математическое ожидание, теорема о существовании случайного процесса с заданной системой конечномерных распределений, закон нуля или единицы и др.) открыли новую эру и в развитии самой теории вероятностей, и в расширении сферы ее влияния и областей применения» (Ю.В. Прохоров, А.Н. Ширяев).

В дальнейшем автор, используя свое открытие, заложил основы теории марковских случайных процессов с непрерывным временем, развил теорию стационарных случайных процессов.

Со студенческих лет Колмогоров старался направить свои научные разработки в практическое русло, чем оказал сильнейшее влияние на ряд прикладных разделов математики: историю этой науки и методы ее преподавания, а также на кибернетику, информатику, небесную механику, гидромеханику, метеорологию, кристаллографию, биологию, теорию стрельбы, теорию лингвистики и даже теорию стиха.

В годы Великой Отечественной войны, например, по заданию Главного артиллерийского управления армии ученый на базе своих исследований по теории вероятностей вычислял траектории рассеивания снарядов при стрельбе. После войны разработал статистические методы контроля массовой продукции, тут же востребованные всеми отраслями народного хозяйства СССР. Но тогда же он творил и «чистую» науку, разрешая фундаментальные проблемы математики – по малым знаменателям в задачах классической механики, внедрению понятия энтропии в различные области математики, представлению функций в виде суперпозиций. Отдал он дань и теории вероятностей – ее экстремальным задачам, равномерным предельным теоремам с точки зрения распределений в функциональных пространствах и др.