Оба типа пылинок, то есть графитовые и силикатные, формируются в наружных оболочках старых холодных звезд.
Когда звезда стареет, она постепенно теряет и вес. А газообразное вещество, покидающее звезду, с расстоянием остывает. И когда его температура становится меньше температуры плавления вещества, составляющего пылинку, молекулы газа начинают «объединяться» в миниатюрные «комки», образуя зародыши пылинок.
В первое время жизни частичка увеличивается в размерах очень медленно. Но когда температура начинает падать, рост пылинки ускоряется. Длится этот процесс ее «развития» несколько десятилетий. А когда газ достигает высокой степени разрежения, рост частичек прекращается.
Часто пылинки вкупе с газом концентрируются в облака, плотность вещества в которых иногда в миллионы раз выше окружающего пространства.
«Юная» пылинка имеет сравнительно простое строение. В связи с тем, что окружающее пылинку пространство особым разнообразием не отличается, ее химический состав и строение тоже относительно примитивны.
Так, химия микроскопической частички напрямую определяется тем элементом, который превалировал в оболочке звезды, то есть кислородом или углеродом. Связано это с тем, что в процессе охлаждения вещества, «покинувшего» звезду, углерод и кислород соединяются в прочные молекулы окиси углерода.
Так вот, когда после этого остаются излишки углерода, формируются графитовые частицы. И наоборот, если весь углерод окажется в окиси углерода, то избыточный кислород соединится с кремнием, и в результате появятся силикатные пылинки. Это, можно сказать, моногамные частицы, то есть состоящие из однородного вещества, которые формируются в очень разреженном пространстве.
Но когда плотность межзвездного газа достигает тысяч атомов на кубический сантиметр, пылинки ведут себя уже совсем по-другому: на их поверхности появляется оболочка из легкоплавких соединений, которые представлены чаще всего замерзшей водой, формальдегидом и аммиаком. То есть иначе говоря, пылинка «одевается» в ледяную корку.
Но поскольку этот «лед» сам по себе довольно хрупок, то при внешнем излучении и взаимных соударениях пылинок он преобразуется в более устойчивые органические соединения, образующие вокруг частицы особую пленку.
И третий тип пылинок появляется в настолько плотных молекулярных облаках, что звездное излучение туда уже не может проникнуть. А раз так, то и лед на поверхности пылинок не разрушается. В этом случае они состоят из трех слоев: ядра, слоя из органических соединений и ледяной корки.
Существует гипотеза, согласно которой такие частички, сконденсировавшись в громадные комья, формируют ядра комет-реликтов, которые образовались еще тогда, когда Солнечная система представляла собой плотное непрозрачное облако…
Круговорот вещества во Вселенной
Итак, нам уже известно, что в разных областях межзвездного пространства плотность газа и пыли очень неравномерна. В некоторых же местах эти вещества скапливаются в более концентрированные структуры, образуя гигантские облака и сверхоблака.
Однако межзвездный газ – это не просто разреженное вещество, представленное атомным и молекулярным водородом, а материал, из которого формируются новые звезды. А происходит этот процесс следующим образом. Сначала в некоторых зонах газового облака в результате сил гравитации появляются плотные сгустки вещества – зародыши новых звезд.
Образовавшийся «комок» продолжает сжиматься. И длится этот процесс до тех пор, пока в центре этого сгустка температура и плотность не поднимутся до той критической отметки, после которой начинаются термоядерные реакции, в ходе которых водород превращается в гелий. Как только эти процессы пойдут, сгусток газа становится звездой.
Кроме газа, активную роль в образовании звезд играет и межзвездная пыль. Именно благодаря ей газ быстрее остывает. Связано это, во-первых, с тем, что пыль поглощает выделяющуюся во время сжатия облака энергию; во-вторых, эту энергию она перераспределяет по другим диапазонам спектра, тем самым влияя на энергетический обмен между звездой и окружающим пространством. И от того, каковы свойства пыли, а также какое ее количество в протозвездном облаке, зависит, сколько звезд в нем появится, а также каковой будет их масса.
Раскаленное облако межзвездного газа, похожее на пламя огня от костра и названное «Хаббл-V»
Когда в той или иной области молекулярного облака появились звезды, то они уже начинают оказывать существенное влияние на окружающий их газ. Это влияние проявляется в том, что начинают также уплотняться и соседние газовые облака, что приводит к формированию в них новых звезд.
То есть звездообразование в молекулярных облаках подобно цепной реакции: оно сначала «вспыхивает» в одной области облака, а затем постепенно охватывает другие его участки, а также примыкающие облака. В ходе этого процесса межзвездный газ превращается в звезды.
В конце концов наступает такой момент, когда весь водород в центре звезды превращается в гелий. А это значит, что и ядерные реакции горения водорода тоже затухают. После этого центральная часть звезды начинает уплотняться, а ее наружные области – расширяться.
В дальнейшем своем эволюционном развитии звезда сбрасывает свою наружную оболочку или же взрывается, в результате чего газ, из которого она была сформирована, снова возвращается в межзвездное пространство.
Разлетающееся вещество оболочки подхватывает межзвездный газ, одновременно поднимая его температуру до многих сотен тысяч градусов. Когда же он, удалившись на огромное расстояние от звезды, начинает охлаждаться, то образует волокнистые туманности, скорость расширения которых достигает сотен километров в секунду.
Пройдет еще несколько сотен тысяч лет, когда остатки этого вещества начнут терять скорость и в конце концов рассеются в межзвездной среде. Правда, при этом не исключено, что через какое-то время «фрагменты» этого газа могут снова войти в состав какой-либо новой звезды.
Конечно, звезды появлялись и гибли в Галактике на протяжении всего времени ее существования, то есть многих миллиардов лет. И поэтому практически весь тот газ, который в настоящее время присутствует в межзвездном пространстве, уже не раз прошел через ядерное горнило.
Следует иметь в виду, что в первоначальном, или архаичном, газе пыль отсутствовала, то есть он был младенчески чист. Появилась же она в ходе старения красных гигантов – массивных звезд, у которых температура наружной оболочки всего 2—4 тысячи градусов.
При столь низкой температуре в атмосфере звезды и возникают пылевидные частицы. Под воздействием излучения звезды они выдуваются в межзвездное пространство, где затем смешиваются с межзвездным газом.
Так происходит круговорот газа и пыли в пределах одной галактики…
А вот этот удивительный и даже невероятный факт установил американский астроном Лоренс Рудник. Как удалось выяснить ученому, в космическом пространстве протяженностью порядка 100 миллионов световых лет отсутствуют не только галактики, отдельные звезды и «черные дыры», но также и «темная материя».
Хотя следует отметить, что это не единственный случай, когда астрономы во время наблюдений Вселенной натыкались на пустынные космические пространства. Но, в отличие от остальных случаев, обнаруженная «вселенская пустошь» по масштабу в 1000 раз превышает ту, которую предполагалось обнаружить.
А еще раньше исследователи из Национальной астрофизической лаборатории с помощью радиолокации космического пространства обнаружили в одном участке на 45 % вещества меньше, чем обычно.
Еще один ученый, Брент Тулли из университета Гавайских островов, тоже обнаружил пустоту, которая находится всего лишь в двух миллионах световых лет от Земли.