Выбрать главу

Гейзенбергу и другим «копенгагенцам» потребовалось совсем немного времени, чтобы донести отстаиваемое ими учение до тех, кто не посещал европейских институтов. В Соединённых Штатах Гейзенберг нашёл особенно благоприятную среду для обращения в свою веру новых сторонников. Во время совместного с Дираком кругосветного путешествия в 1929 году Гейзенберг прочёл в Чикагском университете оказавший огромное влияние на слушателей курс лекций по «копенгагенской доктрине». В предисловии к своим лекциям Гейзенберг писал: «Цель этой книги можно считать достигнутой, если она будет содействовать утверждению копенгагенского духа квантовой теории… который указал дорогу общему развитию современной атомной физики».

Когда «носитель» этого «духа» вернулся в Лейпциг, его ранние научные труды были широко признаны в той области профессиональной деятельности, которая обеспечивала ему высокое положение как в обществе, так и в науке. В 1933 году одновременно со Шрёдингером и Дираком его работы получили высшее признание — Нобелевскую премию.

В течение пяти лет в Институте Гейзенберга были созданы важнейшие квантовые теории твёрдокристаллического состояния, молекулярной структуры, рассеяния излучения на ядрах и протон-нейтронной модели ядер. Совместно с другими теоретиками они сделали огромный шаг в сторону релятивистской квантовой теории поля и заложили основы для развития исследований в области физики высоких энергий.

Эти достижения привлекли многих лучших студентов в такое научное учреждение, как Институт Гейзенберга. Воспитанные в традициях «копенгагенской доктрины», они сформировали новое доминирующее поколение физиков, которые распространили эти идеи, разъехавшись по всему миру в тридцатые годы после прихода к власти Гитлера.

Хотя Гейзенберг по праву считается сегодня одним из величайших физиков современности, он в то же время подвергается критике за многие его поступки после прихода к власти Гитлера. Гейзенберг никогда не был членом нацистской партии, однако он занимал высокие академические должности и был символом немецкой культуры на оккупированных территориях. С 1941 по 1945 год Гейзенберг был директором института физики кайзера Вильгельма и профессором Берлинского университета. Не раз отвергая предложения эмигрировать, он возглавил основные исследования по расщеплению урана, в которых был заинтересован Третий рейх.

После окончания войны учёный был арестован и отправлен в Англию. Гейзенберг давал различные объяснения своим действиям, которые ещё больше способствовали падению его репутации за границей. Верный сын своей страны, Гейзенберг, которому удалось проникнуть в тайны природы, не сумел разглядеть и понять глубину трагедии, в которую была ввергнута Германия.

В 1946 году Гейзенберг вернулся в Германию. Он становится директором Физического института и профессором Гёттингенского университета. С 1958 года учёный являлся директором Физического университета и астрофизики, а также профессором Мюнхенского университета.

В последние годы усилия Гейзенберга были направлены на создание единой теории поля. В 1958 году он проквантовал нелинейное спинорное уравнение Иваненко (уравнение Иваненко—Гейзенберга). Немало его работ посвящено философским проблемам физики, в частности теории познания, где он стоял на позиции идеализма.

Гейзенберг умер в своём доме в Мюнхене 1 февраля 1976 года от рака почки и жёлчного пузыря.

ПОЛЬ ДИРАК

(1902–1984)

Английский физик Поль Адриен Морис Дирак родился 8 августа 1902 года в Бристоле, в семье уроженца Швеции Чарлза Адриена Ладислава Дирака, учителя французского языка в частной школе, и англичанки Флоренс Ханны (Холтен) Дирак.

Сначала Поль учился в коммерческом училище в Бристоле. Затем с 1918 по 1921 год он изучал электротехнику в Бристольском университете и окончил его со степенью бакалавра наук. После этого Поль прошёл ещё и двухлетний курс прикладной математики в том же университете. «Во время этого математического образования больше всего повлиял на меня Фрезер… он был прекрасным учителем, способным внушить своим студентам чувство действительного восхищения фундаментальными идеями математики… — вспоминал Дирак. — У Фрезера я научился двум вещам. Во-первых, строгой математике. До того я использовал только нестрогую математику, которая удовлетворяла инженеров… Они не заботились о точном определении предела, о том, как долго суммировать ряды, и о других подобных вещах. Фрезер учил, что для обращения с этими предметами иногда необходимы строгие логические идеи». И дальше: «Вторая вещь, которой я научился у Фрезера, была проективная геометрия. Она оказала на меня глубокое влияние благодаря присущей ей математической красоте… Проективная геометрия всегда работает с плоским пространством… она обеспечивает вас методами, такими как метод взаимнооднозначных соответствий, которые, как по волшебству, получают результаты; теоремы евклидовой геометрии, над которыми вы долго мучились, выводятся наипростейшими способами, если использовать рассуждения проективной геометрии».

Дирак продолжал интересоваться проективной геометрией и после того, как в конце 1923 года стал аспирантом Кембриджского университета, специализирующимся в теоретической физике под руководством Ральфа Говарда Фаулера. В частности, он регулярно посещал чаепития в доме профессора Бейкера, происходившие по субботним вечерам. После каждого из таких чаепитий кто-то делал сообщение о геометрической задаче. Сам Дирак тоже «работал с проективной геометрией… и сделал одно из сообщений на таком чаепитии. Это была первая лекция в моей жизни, и, конечно, я её хорошо запомнил. В ней шла речь о новом методе решения проективных задач».

Затем Дирак поступил в аспирантуру по математике колледжа св. Иоанна в Кембридже и в 1926 году защитил докторскую диссертацию. В следующем году Дирак стал членом научного совета того же колледжа.

Ещё в университете Дирак заинтересовался теорией относительности Альберта Эйнштейна. В годы, когда Дирак проходил аспирантуру в Кембридже, Гейзенберг и Шрёдингер разработали свои формулировки квантовой механики, применив квантовую теорию к описанию поведения атомных и субатомных систем и движения таких частиц, как электрон.

Дирак начал изучать уравнения Гейзенберга и Шрёдингера, как только те были опубликованы в 1925 году, высказав при этом несколько полезных замечаний. Одним из недостатков квантовой механики было то, что она была разработана лишь применительно к частицам, обладающим малой скоростью (по сравнению со скоростью света), а это позволяло пренебречь эффектами, рассматриваемыми теорией относительности Эйнштейна. Эффекты теории относительности, такие как увеличение массы частицы с возрастанием скорости, становятся существенными, только когда скорости начинают приближаться к скорости света.

На Сольвеевском конгрессе в октябре 1927 года к Дираку подошёл Бор. Вот как вспоминает об этом сам Дирак: «Бор подошёл ко мне и спросил: „Над чем сейчас работаете?“ Я ответил: „Пытаюсь получить релятивистскую теорию электрона“. Бор тогда сказал: „Но ведь Клейн уже решил эту проблему“. Я был несколько обескуражен. Я стал объяснять ему, что решение задачи Клейна, основанное на уравнении Клейна—Гордона, неудовлетворительно, так как его нельзя согласовать с моей общей физической интерпретацией квантовой механики. Однако я так и не смог объяснить что-либо Бору, так как наш разговор был прерван началом лекции и вопрос повис в воздухе».

Дирак был недоволен. Он стремился получить уравнения для одного электрона, а не для системы частиц с разными зарядами. Он добился своего, но решение его удивило. Двумерных частиц Паули, хорошо описывающих спин в нерелятивистском случае, явно не хватало. Электрон в теории имел лишнюю степень свободы — свободы, как оказалось, перехода в состояние с отрицательной энергией. Это выглядело настолько дико, что впору было отказаться от всего сделанного.

В поисках выхода Дирак предложил странную идею. Он предположил, что все электроны Вселенной занимают уровни с отрицательной энергией, согласно принципу Паули, образуя ненаблюдаемый фон. Наблюдаемы только электроны с положительной энергией. «Электроны, — пишет Дирак, — распределены по всему миру с большой плотностью в каждой точке. Совершенная пустота есть та область, где все состояния с отрицательной энергией заняты». «Незаполненные состояния с отрицательной энергией представятся как нечто с положительной энергией, потому что для того, чтобы они исчезли, необходимо внести туда один электрон с отрицательной энергией. Мы предполагаем, что эти незанятые состояния с отрицательной энергией суть протоны».