Ампер умер от воспаления лёгких 10 июня 1836 года в Марселе во время инспекционной поездки. Там же он и был похоронен.
АМЕДЕО АВОГАДРО
В историю физики Авогадро вошёл как автор одного из важнейших законов молекулярной физики.
Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди Черрето родился 9 августа 1776 года в Турине — столице итальянской провинции Пьемонт в семье служащего судебного ведомства Филиппо Авогадро. Амедео был третьим из восьми детей. Предки его с XII века состояли на службе католической церкви адвокатами и по традиции того времени их профессии и должности передавались по наследству. Когда пришла пора выбирать профессию, Амедео также занялся юриспруденцией. В этой науке он быстро преуспел и уже в двадцать лет получил учёную степень доктора церковного права.
Юридическая практика не увлекала Амедео, его интересы были далеки от юриспруденции. В юношеские годы он недолго посещал так называемую школу геометрии и экспериментальной физики. Она-то и пробудила в нём любовь к этим наукам. Но, не получив достаточно систематических знаний, он вынужден был заняться самообразованием. Когда ему уже исполнилось 25 лет, он стал всё свободное время посвящать изучению физико-математических наук.
Авогадро начал свою научную деятельность с изучения электрических явлений. Этот интерес особенно усилился после того, как Вольта в 1800 году изобрёл первый источник электрического тока, а также в связи с дискуссией между Гальвани и Вольта о природе электричества. Эти вопросы находились на переднем крае науки того времени, и естественно, что молодой Авогадро решил попробовать свои силы именно здесь.
Работы Авогадро, посвящённые разным проблемам электричества, появлялись вплоть до 1846 года. Большое внимание уделял он также исследованиям в области электрохимии, пытаясь найти связь между электрическими и химическими явлениями, что привело его к созданию своеобразной электрохимической теории. В этом отношении его исследования соприкасались с работами известных химиков Дэви и Берцелиуса.
В 1803 и 1804 годах Амедео, совместно со своим братом Феличе, представил в Туринскую академию наук две работы, посвящённые теории электрических и электрохимических явлений, за что и был избран в 1804 году членом-корреспондентом этой академии. В первой работе под названием «Аналитическая заметка об электричестве» он объяснял поведение проводников и диэлектриков в электрическом поле, в частности явление поляризации диэлектриков. Высказанные им идеи получили затем более полное развитие в работах других учёных, в частности Ампера.
В 1806 году Авогадро получает место репетитора в Туринском лицее, а затем, в 1809 году, переводится преподавателем физики и математики в лицей города Верчелли, в котором он проработал около десяти лет. В этот период он знакомится с огромным количеством научной литературы, делая многочисленные выписки из прочитанных книг и журнальных статей. Эти выписки, которые он не прекращал вести до конца своих дней, составили 75 томов примерно по 700 страниц в каждом! Содержание этих томов свидетельствует о разносторонности интересов Авогадро, о колоссальной работе, которую он проделал, «переквалифицировавшись» из юриста в физика.
Свою семейную жизнь Авогадро устроил довольно поздно, когда ему было уже за тридцать. Работая в Верчелли, он познакомился со своей будущей женой Анной Марией Маццье ди Джузеппе, дочерью нотариуса, которая была моложе его на 18 лет. От этого брака он имел восемь детей — двоих сыновей и шесть дочерей. Никто из них не унаследовал его профессии и интересов.
В 1808 году французский учёный Гей-Люссак, изучая реакции между газами, установил, что объёмы вступающих в реакцию газов и газообразных продуктов реакции относятся как небольшие целые числа. А в 1811 году появляется статья Авогадро «Очерк метода определения относительных масс элементарных молекул тел и пропорций, согласно которым они входят в соединения». Излагая основные представления молекулярной теории, Авогадро показал, что она не только не противоречит данным, полученным Гей-Люссаком, но, напротив, прекрасно согласуется с ними и открывает возможность точного определения атомных масс, состава молекул и характера происходящих химических реакций. Для этого, прежде всего, необходимо представить, что молекулы водорода, кислорода, хлора и некоторых других простых веществ состоят не из одного, а из двух атомов.
В этой же работе Авогадро пришёл к следующему важному заключению: «…число… молекул всегда одно и то же в одинаковых объёмах любых газов». Разумеется, если объёмы измерены при одинаковых давлениях и температурах.
Далее он писал, что теперь «имеется средство очень лёгкого определения относительных масс молекул тел, которые можно получить в газообразном состоянии, и относительного числа молекул в соединениях».
Благодаря новому закону Авогадро впервые получил, в частности, правильную формулу реакции образования воды.
В 1814 году появляется вторая статья Авогадро «Очерк об относительных массах молекул простых тел, или предполагаемых плотностях их газа, и о конституции некоторых из их соединений». Здесь чётко формулируется закон Авогадро: «…равные объёмы газообразных веществ при одинаковых давлениях и температурах отвечают равному числу молекул, так что плотности различных газов представляют собою меру масс молекул соответствующих газов». Далее в статье рассматриваются приложения этого закона для определения состава молекул многочисленных неорганических веществ.
Так как масса одного моля вещества пропорциональна массе отдельной молекулы, то закон Авогадро можно сформулировать как утверждение, что моль любого вещества в газообразном состоянии при одинаковых температурах и давлениях занимает один и тот же объём. Как показали эксперименты, при нормальных условиях число молекул в моле любого вещества одинаково. Оно получило название числа Авогадро.
Это число — одна из важнейших универсальных постоянных современной физики и химии. Она используется при определении ряда других универсальных постоянных, например, постоянной Больцмана, постоянной Фарадея и т. п.
Число Авогадро можно определить многими независимыми друг от друга методами. Прекрасное совпадение полученных при этом значений явилось убедительным доказательством реальности молекул и справедливости молекулярно-кинетической теории.
В 1821 году в статье «Новые соображения о теории определённых пропорций в соединениях и об определении масс молекул тел» Авогадро подвёл итог своей почти десятилетней работе в области молекулярной теории и распространил свой метод определения состава молекул на целый ряд органических веществ. В той же статье он показал, что другие химики, прежде всего Дальтон, Дэви и Берцелиус, незнакомые с его работами, продолжают придерживаться неверных взглядов на природу многих химических соединений и характер происходящих между ними реакций.
В сентябре 1819 года Авогадро избирается членом Туринской академии наук. К этому времени он уже приобрёл известность в кругу своих коллег работами в области молекулярной теории, электричества и химии.
В 1820 году королевским указом Авогадро назначается первым профессором новой кафедры высшей физики в Туринский университет.
Интересны взгляды Авогадро на преподавание физики, высказанные им при занятии этой должности. Итальянская наука в то время была ещё очень слабо развита. Стремясь к тому, чтобы помочь своей родине сравняться по уровню развития естественных наук с другими европейскими странами, Авогадро наметил обширный план действий. Основная его идея заключалась в необходимости сочетания преподавания с научной деятельностью.
Этим прогрессивным идеям не суждено было осуществиться из-за военных и политических событий в Италии начала двадцатых годов. В 1822 году после студенческих волнений Туринский университет был на целый год закрыт властями, а ряд его новых кафедр, в том числе и кафедра высшей физики, ликвидирован. Тем не менее в 1823 году Авогадро получает почётный титул заслуженного профессора высшей физики и назначается старшим инспектором Палаты по контролю за государственными расходами — должность финансово-юридическая, весьма далёкая от науки. Несмотря на новые обязанности, Авогадро продолжал заниматься научными исследованиями.