Через каждые 10 м глубины давление увеличивается на 1 атм (примерно 1 кг/см2). На глубине 1000 м давление составляет около 100 атм: этого достаточно, чтобы сжать кусок дерева до половины его начального объема, так что он начнет тонуть.
Батискаф «Триест» подвергался на дне Марианского желоба давлению 1100 атм. Роберт Тот подсчитал, что батискаф при этом выдерживал вес двух с половиной авианосцев. Корпус батискафа диаметром 218 см при толщине стенок 87 мм был сжат давлением воды на 2 мм, так что от него даже отстала краска. На дне менее глубокого желоба Пуэрто-Рико (самого глубокого в Атлантике), на глубине 8390 м, французский батискаф «Архимед» выдержал давление около 840 атм.
В прибрежных водах, где плотность сильно меняется, ее иногда измеряют непосредственно ареометром. В открытом океане, где нужна высокая точность, плотность не измеряется, а рассчитывается по температуре, солености и глубине (давлению).
Самая плотная вода в районе Антарктики: там она имеет не только низкую температуру, но и высокую соленость. При образовании льда остающаяся вода становится более соленой и тем самым более плотной.
Так океанологи обозначают условную плотность. Например, плотность, равная 1,025, записывается так: σt = 25,0.
Если известно вертикальное распределение плотности морской воды, то можно рассчитать направление и скорость течений. Вертикальное распределение плотности необходимо знать и для определения устойчивости водной массы: если масса неустойчива, то есть если более плотная вода лежит выше менее плотной, будет происходить перемешивание.
Морская вода практически несжимаема. Точнее говоря, ее коэффициент сжимаемости составляет всего 0,000 046 на 1 бар при нормальных условиях. Отклонения этой величины за счет изменения температуры и солености невелики. Под действием давления молекулы воды несколько сближаются друг с другом, вследствие чего плотность ее немного увеличивается. Если бы вода была абсолютно несжимаемой, то, по расчетам Океанографического управления ВМС США, уровень Мирового океана оказался бы на 27 м выше.
В морской воде звук распространяется в 4,5 раза быстрее, чем в воздухе[23]. Скорость его распространения зависит от температуры, солености и давления. С увеличением любого из этих факторов скорость звука возрастает.
Ее можно рассчитать, зная температуру, соленость и глубину — три основные характеристики, измеряемые на океанографических станциях. В течение многих лет этот метод был единственным. В последние годы скорость звука в морской воде стали измерять непосредственно. Измерители скорости звука работают на принципе измерения отрезка времени, за который звуковой импульс проходит определенное расстояние.
Звуковые колебания, возникшие при подводном взрыве, произведенном исследовательским судном Колумбийского университета «Вема» в 1960 г., были зарегистрированы на расстоянии 12 000 миль. В подводном звуковом канале у побережья Австралии была взорвана глубинная бомба, и примерно через 144 мин звуковые колебания достигли Бермудских островов, то есть почти противоположной точки земного шара.
Это зона, в которой скорость звука сначала уменьшается с глубиной до некоторого минимума, а затем увеличивается за счет роста давления. Возбуждаемые в этой зоне звуковые волны не могут из нее выйти, так как искривляясь возвращаются к оси канала. Попав в такой канал, звук может пройти тысячи миль.
Это сокращение английских слов «sound fixing and ranging» (обнаружение источников звука и измерение расстояния до них). В системе СОФАР используется звуковой канал на глубинах 600 — 1200 м. По засечкам с нескольких станций приема можно установить местоположение источника звука в этом канале с точностью до 1 мили. Во время второй мировой войны с помощью этой системы удалось спасти многих летчиков, сбитых над морем. На их самолетах имелись небольшие бомбы, которые взрывались под действием давления при достижении глубины залегания звукового канала.
Гидролокатор работает на том же принципе, что и радиолокатор, только вместо радиоволн в нем используются звуковые (акустические) волны. Гидролокатор может быть активным или пассивным. Активная система излучает звуковые колебания и принимает отраженный сигнал, или эхосигнал. Для определения расстояния надо взять половину произведения скорости звука на время, прошедшее между излучением звукового импульса и приемом отраженного сигнала. Пассивная система работает в режиме прослушивания, и с ее помощью можно определить лишь направление, в котором находится источник звука. Гидролокатор используется для обнаружения подводных лодок, навигации, поиска косяков рыбы и для определения глубины. В последнем случае гидролокатор представляет собой обычный эхолот.