Выбрать главу

ЮПИТЕР 2: СПУТНИКИ

Известно, что Юпитер имеет по меньшей мере 16 спутников, расположенных на расстоянии от 130 тысяч до более 20 млн. километров от планеты. Галилей открыл четыре самых больших спутника: Ио, Ганимед, Каллисто и Европа. Эти четыре спутника можно наблюдать в телескоп как яркие точки в экваториальной плоскости планеты. Их положение изменяется от одной ночи к следующей, так как они вращаются вокруг планеты с периодом порядка нескольких суток, а не лет. Космический зонд "Вояджер-2" послал на Землю подробные фотографии крупных спутников Юпитера, когда пролетал мимо них. Еще более подробные изображения поступили от космического зонда "Галилей", который вышел на орбиту вокруг Юпитера в 1995 году.[43]

Диаметр Ио, ближайшего к Юпитеру спутника планеты, примерно равен диаметру земной Луны. Его период обращения составляет 1,8 суток, а радиус орбиты 0,42 млн. км. Вулканическая активность на поверхности Ио поразила астрономов, когда она впервые наблюдалась на фотографиях, полученных с космического зонда "Вояджер-2". Считается, что наличие расплавленного материала в недрах Ио и извержения на поверхности спутника вызваны периодическим растяжением и сжатием под воздействии гравитационного поля Юпитера в сочетании с другими внешними спутниками. Средняя плотность Ио примерно такая же, как у земной Луны. Европа, второй крупный спутник Юпитера, меньше Ио и совершает полный оборот вокруг планеты за 3,6 суток. Радиус ее орбиты составляет 0,67 млн. км. Гладкая поверхность Европы расцвечена коричневыми пятнами и покрыта трещинами. Средняя плотность этого спутника примерно такая же, как у земной Луны.

Ганимед, следующий по счету, — самый большой спутник Юпитера. Период его обращения вокруг планеты составляет 7,2 суток при радиусе орбиты 1,1 млн. км. На его поверхности, которая, как считается, покрыта мощным слоем льда, видны разломы и яркие кратеры. Средняя плотность Ганимеда в 1,9 раза превышает плотность воды.

Каллисто, наиболее отдаленный из крупных спутников Юпитера, не такой большой, как Ганимед, и имеет сходную с ним среднюю плотность. Он обращается вокруг Юпитера за 16,7 суток, а радиус его орбиты составляет 1,9 млн. км. Его поверхность, густо покрытая кратерами, представляет собой мощную кору, состоящую изо льда и скальных образований.

См. также статьи "Кратеры", "Галилей".

ЯДЕРНЫЙ СИНТЕЗ

Энергия, излучаемая звездой, возникает в процессе ядерного синтеза, который происходит в ядре звезды. В ходе этого процесса легкие ядра соединяются, образуя более тяжелые ядра, и высвобождается энергия в виде гамма-излучения и частиц высоких энергий. Энергия, высвобождаемая в пересчете на килограмм водорода, примерно в 10 млн. раз больше, чем энергия, высвобождаемая при сгорании одного килограмма нефти.

Температура в ядре звезды достигает десятков миллионов градусов, и ядра элементов движутся с очень большой скоростью. Поскольку они обладают положительным электрическим зарядом, то избегали бы столкновения и отталкивали друг друга, если бы двигались медленнее. Однако из-за быстрого движения два сталкивающихся ядра преодолевают силу электростатического отталкивания и соединяются, образуя более тяжелое ядро. В звездах Главной последовательности ядра водорода, представляющие собой одиночные протоны, соединяются в несколько этапов, образуя ядро гелия.

Сначала соединяются два протона, в результате чего один из протонов превращается в нейтрон и образуется ядро дейтерия, состоящее из протона и нейтрона, затем ядро дейтерия соединяется с новым протоном и образует ядро гелия-3, состоящее из двух протонов и нейтрона. И наконец два ядра гелия-3 соединяются и высвобождают два протона, в результате чего остающиеся два протона и нейтрона соединяются, образуя ядро гелия-4.

Пока в недрах звезды Главной последовательности сохраняется достаточное количество водорода, реакция ядерного синтеза продолжается, и поток излучения не дает звезде коллапсировать под воздействием собственной силы тяготения. Когда водород в ядре исчерпывается, ядро коллапсирует, а внешние слои звезды раздуваются и остывают, так что она становится красным гигантом. Затем ядра гелия начинают поэтапно соединяться, образуя ядра более тяжелых элементов и высвобождая новую энергию. Этот процесс продолжается до формирования тяжелых ядер, таких, как ядра железа. Поскольку для образования еще более тяжелых ядер необходима дополнительная энергия, реакция ядерного синтеза прекращается, и звезда снова коллапсирует, становясь белым карликом.