Выбрать главу

К кристаллическим твердым веществам принадлежат как металлы, так и кристаллы. Так как атомы в кристаллах расположены упорядоченно, то поверхности кристалла образуют четкие углы относительно друг друга. Металл состоит из крошечных кристаллов, которые называются гранулами (зернами). Гранулы расположены по отношению друг к другу случайно.

Керамические материалы состоят из большого количества крошечных кристаллов или гранул, которые находятся в стеклоподобном веществе типа кварца. Эти материалы химически стабильны, потому что внешние электроны атомов стеклоподобного вещества удерживаются сильными связями между атомами вещества и не могут взаимодействовать с ионами других веществ. У керамических материалов очень высокая температура плавления, так как кристаллы в них состоят из ионов, удерживаемых друг возле друга сильными ионными связями.

Аморфные твердые тела состоят из атомов или групп атомов, соединенных между собой случайно, но жестко. Стекло — это аморфное твердое тело. В расположении атомов и молекул аморфного вещества нет никакого порядка («аморфный» — значит «не имеющий формы»).

Полимеры состоят из длинных молекул, каждая из которых образована одинаковыми группами атомов, называемых мономерами, они подсоединяются к другим мономерам и образуют цепочки. В нерастянутом состоянии молекулы обычно спутаны между собой случайно и имеют пересекающиеся межмолекулярные связи, удерживающие твердое вещество в фиксированном положении. Когда молекулы расположены упорядоченно относительно друг друга, полимер считается кристаллическим.

При вытягивании полимера вытягиваются его молекулы.

См. также статьи «Агрегатные состояния вещества», «Типы межатомных связей».

ТЕМНАЯ МАТЕРИЯ

Одна из самых больших научных загадок начала XXI века — местонахождение большей части материи во Вселенной. Эту скрытую материю называют темной материей, или недостающей массой. Темная — это невидимая материя, находящаяся внутри галактик или между ними и замедляющая их вращение. На ее долю приходится по крайней мере 90 % всей массы Вселенной, но до сих пор она не опознана.

Наличие большого количества темной материи предположили при изучении звезд в «рукавах» спиральных галактик. Рассчитав скорость таких звезд и измерив их допплеровский сдвиг, астрономы вычислили, что спиральные галактики вращаются, а звездам в «рукавах» таких галактик требуется одинаковое время для одного оборота независимо от расстояния до центра. Общую массу галактики можно вычислить исходя из скорости вращения. Звезда в крайней точке галактики продолжает вращаться вокруг галактического центра, поскольку испытывает к нему гравитационное притяжение; подобным образом и планеты вращаются вокруг Солнца. Однако чем дальше планета расположена от Солнца, тем больший период обращения она имеет; звезды же обращаются с одинаковой скоростью независимо от расстояния. Чтобы период обращения был независим от радиуса, нужно, чтобы в спиральных «рукавах» галактики имелось больше вещества, отличного от содержащегося в звездах. Но если бы все вещество галактик было представлено в виде звезд, то они светили бы гораздо ярче, чем на самом деле. Отношение яркости к массе галактики меньше одной десятой подобного соотношения типичной звезды. Поскольку свет галактики складывается исключительно из света звезд, по меньшей мере 90 % массы типичной галактики должно находиться вне звезд и быть «скрытой».

В темную материю могут входить и особые частицы — нейтрино, испускаемые звездами в больших количествах.

См. также статьи «Гравитационное поле 1 и 2», «Движение спутников».

ТЕМПЕРАТУРА

Температура — это мера теплоты объекта. Ее шкала определяется фиксированными точками отсчета, соответствующими температуре хорошо изученного явления.

Температурная шкала Цельсия определяется:

— точкой замерзания воды, соответствующей 0˚С;

— точкой кипения воды при атмосферном давлении, соответствующей 100˚С.

Абсолютная температурная шкала в Кельвинах (К) определяется:

— точкой абсолютного нуля (0˚К) — самой низкой возможной температурой;

— тройной точкой воды, соответствующей 273˚К, при которой три ее агрегатных состояния (твердое, жидкое и газообразное) сосуществуют.

Если учесть, что интервал между точками замерзания и кипения воды измеряется в 100˚К, а тройной точке воды соответствует 273˚К, то перевод из шкалы Цельсия в абсолютную шкалу производится по формуле: К = Т°С + 273.

Первый закон термодинамики

Первый закон термодинамики гласит: переданное системе тепло ΔQ равно сумме изменения внутренней энергии ΔU системы и работы ΔW, проделанной системой: ΔQ = ΔU +ΔW.

Внутренней называется энергия частиц тела, которой они обладают вследствие своего хаотичного движения или отделения друг от друга. Работа — это энергия, переданная в результате перемещения тела из одного места в другое.

Адиабатическим процессом называется изменение состояния системы, происходящее без передачи тепла (ΔQ = 0). Отсюда при адиабатическом изменении ΔU +ΔW = 0. Следовательно, если тело или система тел при этом процессе производит работу ΔW, его внутренняя энергия уменьшается согласно формуле ΔU = — ΔW.

Изотермическим процессом называется изменение состояния системы, происходящее без изменения температуры. Внутренняя энергия идеального газа пропорциональна его абсолютной температуре.

Работа, проделанная идеальным газом при расширении с постоянным давлением р, равна рΔV, где V — изменение объема. Следовательно, при изотермическом процессе в идеальном газе ΔU = 0 и ΔQ = pΔV.

См. также статьи «Агрегатные состояния вещества», «Идеальные газы», «Энтропия».

ТЕПЛОВЫЕ СВОЙСТВА МАТЕРИАЛОВ

Энергия, которой обладает тело благодаря своей температуре, называется тепловой. При передаче телу энергии для увеличения его тепловой энергии частицы тела:

• получают кинетическую энергию с повышением температуры;

• используют получаемую энергию для разрыва связей между молекулами, если тело переходит из твердого состояния в жидкое или газообразное либо из жидкого в газообразное.

Удельной теплоемкостью материала называется количество энергии, необходимое для повышения температуры единицы его массы на один градус. Чтобы повысить температуру тела массой m с Т1 на Т2, нужно передать ему энергию Е = mc(T2 — Т1), где с — удельная теплоемкость материала. Единицей теплоемкости с служит Дж/кг К или Дж/моль К.

Удельной теплотой фазового перехода твердого или жидкого тела называется количество энергии, необходимое для того, чтобы единица массы материала перешла из одного состояния в другое без изменения температуры. Для изменения состояния тела массой m при постоянной температуре нужно передать ему энергию ΔЕ = mI, где I — удельная фазовая теплота плавления, испарения или сублимации (перехода непосредственно из твердого в газообразное состояние, минуя стадию жидкости) данного материала. Единицей I служит Дж/кг или Дж/моль.

Тепловым расширением называется процесс изменения размеров твердого тела при нагревании. При повышении температуры твердого или жидкого тела его частицы совершают колебания с большей средней амплитудой, что и служит причиной расширения объема тела. Увеличение размеров пропорционально начальным размерам и изменению температуры. Коэффициентом линейного расширения материала α называется отношение увеличения линейных размеров к единицам длины и температуры. Единицей α служит К-1. Если тело длиной L нагревать от температуры Т1 до температуры Т2, то увеличение длины составит Δ L = αL (Т2 — Т1).

См. также статьи «Агрегатные состояния вещества», «Температура».