7) показывается применение теорем к решению математических задач и задач с практическим содержанием;
8) многие вопросы рассматриваются на двух уровнях: для неполной средней школы и для средней школы. Например, тригонометрические функции, развитие понятия числа, построение курса геометрии;
9) «Методика...» содержит рассмотрение вопросов, не включённых в программу средней школы, они напечатаны мелким шрифтом и предназначены для желающих углубить свои знания;
10) в «Методике...» рассматриваются этапы развития математики, приводятся биографии выдающихся математиков Советского Союза и других стран. Сообщение этих сведений на уроках математики развивает интерес к предмету. Знакомство с достижениями русских математиков — Лобачевского, Чебышёва и других — способствует воспитанию чувства национальной гордости и патриотизма;
11) после каждой главы учебника — методика арифметики, методика алгебры и т.д. — даётся исчерпывающая библиография, соответствующая периоду издания книги и рекомендуемая учителям и студентам для углубления изучения вопроса;
12) учителя отмечают, что во всех сомнительных случаях, обратившись к «Методике...», можно найти исчерпывающий ответ и разрешить вопрос;
13) без преувеличения можно сказать, что книга В.М. Брадиса явилась своего рода энциклопедией методики преподавания математики и сделалась настольной книгой каждого учителя математики. Она переиздавалась три раза (в 1949, 1951, 1954 г.) и до сих пор популярна.
Методическая работа В.М. Брадиса не ограничилась написанием «Методики...». Ясно представляя себе, какими знаниями и умениями должен обладать выпускник пединститута — будущий учитель математики средней школы, В.М. Брадис принимает активное участие в работе Министерства просвещения и Академии педагогических наук по разработке программ математических дисциплин физико-математических факультетов пединститутов. Одновременно участвует в написании методических указаний к изучению этих курсов для преподавателей педвузов. Разрабатывает темы курсовых работ, содержание которых раскрывает в специальных указаниях к ним, рекомендует соответствующую литературу к каждой курсовой работе. Для учёта знаний студентов-заочников пединститутов составляет контрольные работы. Кроме того, на протяжении всей своей деятельности В.М. Брадис пишет учебники для студентов по различным математическим дисциплинам. Среди них:
1. Арифметика приближенных вычислений (1930, 1931, 1951 г.).
2. Аналитическая геометрия (1934, 1935, 1936, 1937 г.).
3. Теория и практика вычислений (3-е изд. — 1933 г., 5-е изд. — 1937 г.).
4. Элементы теории чисел (1934 г.).
5. Средства и способы элементарных вычислений (1946, 1951, 1954 г.). Евклидова геометрия в аксиоматическом изложении (1949 г.).
6. Теоретическая арифметика (1954 г.).
7. Методика преподавания математики (1949, 1951, 1954 г.).
8. Элементы прикладного анализа (1937 г.).
В.М. Брадис принимал участие в совещаниях Наркомата просвещения и Академии педнаук по совершенствованию программ по математике для средних школ. По его инициативе в программу математики 5-го класса средней школы включена тема «Приближенные вычисления», в программу 7—8-х классов — тема «Логарифмическая линейка», в программу 5—9-х классов — «Измерительные работы на местности» и др.
Большое место в творческой деятельности В.М. Брадиса занимает написание учебников и учебных пособий для учащихся средних школ. Главные из них:
1. Четырёхзначные математические таблицы (издаются ежегодно с 1928 г.).
2. Как надо вычислять? Приближенные вычисления на 5-м году обучения (1929, 1930, 1965 г.).
3. Как надо вычислять? Приближенные вычисления на 6—7-м годах обучения (1931, 1932 г.).
4. Как надо вычислять? Вычисление посредством таблиц логарифмов и счётной логарифмической линейки (1934 г.).
5. Арифметика: Учебник для 5 и 6 классов (1957, 1962 г.).
6. Алгебра: Учебник для 8—10 классов средней школы (1957, 1960 г.).
7. Счётная логарифмическая линейка: Пособие для учащихся 9 класса (1957 г.).
8. Вычислительная работа в курсе математики в средней школе (1962 г.).
Владимиром Модестовичем написаны статьи и книга, которые могут быть использованы учащимися средней школы для домашнего чтения, изучения их в математических кружках, проведения математических вечеров. Особенно полезны и интересны следующие.
1. Как найти площадь фигуры с произвольным контуром? Статья напечатана в 1923 г. в журнале «Знамя рабфаковца» (№ 3—5. С. 61—68). Способ сводится к тому, что сравнивается вес фигуры с произвольным контуром с весом квадрата из такой же бумаги площадью 10 см2. Этот способ В.М. Брадис показал рабфаковцам в связи с тем, что они обратились к нему с просьбой познакомить с каким-либо методом вычисления площади географического района, озера и т.д.