Выбрать главу

Порой люди пытаются озадачить нас небольшими искажениями смысла слов. Один человек задал мне недавно старую, известную задачу: «Мальчик ходит вокруг шеста, на котором сидит обезьяна; но обезьяна все время крутится на шесте так, что мордочка ее всегда обращена в сторону, противоположную той, куда смотрит мальчик. Обходит ли при этом мальчик вокруг обезьяны?» Я ответил, что если бы он дал мне определение понятия «ходить вокруг», то я дал бы ему ответ. Он, конечно, отказался. Тогда я сказал, что если понимать слова в их обычном, прямом значении, то, безусловно, мальчик обходит вокруг обезьяны. Как и ожидалось, он стал утверждать, что это не так, ибо под «хождением вокруг» понимал такое перемещение, при котором мы видим предмет со всех сторон. На что я возразил, что тогда слепой не может вообще обойти вокруг чего-либо. Тогда он подправил свое определение, сказав, что в действительности видеть все стороны нет нужды, но вы должны так двигаться, чтобы, глядя все время на предмет, могли бы увидеть его со всех сторон. На что я сказал, что в таком случае вы никогда не сможете обойти вокруг человека, сидящего в ящике! И т. д. Предмет этой дискуссии удивительно глуп, и если с самого начала принять простое и правильное определение того, что значит «ходить вокруг», то не останется вовсе никакой головоломки и вы избегнете утомительных и зачастую жарких споров.

Поняв условия задачи, посмотрите, нельзя ли их упростить, ибо на этом пути можно избавиться от множества затруднений. Всегда озадачивает классический вопрос о человеке, который, указав на портрет, сказал: «Сестер и братьев нет у меня, но отец этого человека сын моего отца». Каково родственное отношение говорившего к человеку на портрете? Задача сразу же упрощается, если сказать, что «сын моего отца» означает «я сам» или «мой брат». Но поскольку у говорившего не было братьев, то вполне очевидно, что это значит «я сам». Таким образом, утверждение означает всего лишь: «Отец этого человека — я сам», то есть на портрете изображен сын говорившего. И все же люди порой размышляют над этим вопросом целый час!

Во многих областях царства головоломок есть еще не раскрытые тайны. Давайте рассмотрим несколько примеров из мира чисел — небольшие штучки, понять которые способен ребенок, хотя величайшим умам не удалось их решить. Каждый, наверное, слышал выражение «трудно квадрировать круг», хотя далеко не все имеют представление о том, что это означает. Если у вас есть круг заданного диаметра и вы хотите найти сторону квадрата в точности той же площади, то вы имеете дело с задачей о квадратуре круга. Так вот, решить ее совершенно точно невозможно (хотя мы можем найти ответ, достаточно точный для практических целей), ибо не существует рационального числа, равного отношению диаметра к окружности. Но лишь недавно доказано, что эта задача неразрешима, ибо одно дело безуспешно пытаться решить задачу и совсем другое — доказать, что она не имеет решения. Только невежественные любители головоломок могут сегодня тратить время, пытаясь квадрировать круг.

Точно так же мы не можем выразить диагональ квадрата через его сторону с помощью рационального числа. Если у вас есть квадратное окно со стороной ровно в один фут, то существует расстояние от одного его угла до другого, хотя вам не удастся выразить его рациональным числом. Простодушный человек, быть может, предположит, что мы можем взять диагональ длиной в один фут, а затем уже построить наш квадрат. И все же нам это не удастся; более того, мы не сможем выразить сторону квадрата рациональным числом, каким бы способом ни стремились к этому.