4. Рыцарь сказал, что на его щите можно отметить 575 квадратов с розой в каждом углу. Как получился такой результат, становится понятным, если обратиться к рисунку. Соединив А, В, С и D, можно образовать 66 квадратов такого размера; размер A, E, F, G приводит к 48 квадратам; А, Н, I, J — к 32; В, К, Z, М — к 19; В, N, О, Р — к 10; В, Q, R, S — к 4; E, Т, F, С — к 57; I, U, V, Р — к 33; Н, W, X, J — к 15; K, Y, Z, М — к 3; E, a, b, D — к 82; H, d, М, D — к 56; Н, е, f, G — к 42; К, g, f, С — к 32; N, h, z, F — к 24; K, h, m, b — к 14; К, О, S, D — к 16; К, n, р, G — к 10, K, q, r, J — к 6; О, t, р, С — к 4; наконец, Q, u, r, i приводит к 2 квадратам. Таким образом, общее число квадратов равно 575. Эти группы можно истолковывать так, как если бы каждая представляла квадрат отличного от других размера. Это верно, за одним исключением: квадраты группы B, N, O, P имеют точно такой же размер, как и квадраты группы K, h, m, b.
5. Добрая женщина объяснила, что затычка, плотно загнанная в бочку, тем похожа на только что выпавшую, что обе они затыкают ничего', первая — ничего в смысле неплохо, а вторая — ничего в смысле ничего не затыкает. Маленькое недоразумение с родственниками легко разрешится, когда нам скажут, что родительский приказ исходил от отца (который также находился в этой комнате), а не от матери.
6. Головоломка, предложенная веселым хозяином харчевни «Табард» из Соуерка, оказалась более популярной, чем головоломки остальных паломников.
— Я вижу, любезные господа мои, — воскликнул он, — что здорово задурил вам голову своей маленькой хитростью. И все-таки для меня не составляет труда налить ровно по одной пинте в каждую из мер, одна из которых вмещает пять, а вторая — три пинты, не пользуясь никакими другими мерами.
Такими словами Трактирщик начал объяснять паломникам, как именно можно выполнить это на первый взгляд невыполнимое задание. Тут он наполнил обе меры, а затем, отвернув кран бочки, позволил пиву выливаться на пол (против чего вся компания энергично запротестовала; но хитроумный хозяин сказал, что он совершенно уверен — в бочке не многим более восьми пинт). (Уместно заметить, что количество вылившегося эля не влияет на решение головоломки.) Потом он закрыл кран и перелил содержимое 3-пинтовой меры назад в бочку. Далее Трактирщик наполнил эту меру из 5-пинтовой и вылил из нее пиво в бочку, затем он перелил 2 пинты из 5-пинтовой меры в 3-пинтовую, наполнил 5-пинтовую меру из бочки, оставив таким образом в бочке 1 пинту. Потом он наполнил 3-пинтовую меру из 5-пинтовой, позволил компании выпить содержимое 3-пинтовой меры, наполнил 3-пинтовую меру из 5-пинтовой, оставляя тем самым в 5-пинтовой мере 1 пинту, выпил содержимое 3-пинтовой меры и, наконец, вылил 1 пинту из бочки в 3-пинтовую меру. Таким образом, к величайшему изумлению и восхищению паломников, в каждой мере оказалось ровно по 1 пинте эля.
7. На рисунке показано, как именно следует разрезать квадрат на четыре части и как из них сложить магический квадрат. Можно проверить, что сумма чисел в каждой строке, столбце и на каждой диагонали равна 34.
8. Кусок гобелена следовало разрезать по прямым на три части и сложить из них квадрат, как показано на рисунке. Заметьте, узоры идут в правильном порядке. Такой способ согласуется и с требованием, чтобы одна из трех частей была как можно меньшей (в данном случае она состоит лишь из 12 маленьких квадратиков).
9. Плотник сказал, что он сделал ящик, внутренние размеры которого в точности совпадали с размерами исходного бруса, то есть 3×1×1. Затем он поместил резной столбик внутрь ящика, а пустоты заполнил сухим песком, который он по ходу дела хорошенько встряхивал до тех пор, пока в ящик нельзя уже было ничего больше засыпать. Затем Плотник осторожно вынул столбик, внимательно следя за тем, чтобы не просыпать ни песчинки, встряхнул песок в ящике и показал, что он заполняет пространство ровно в один кубический фут. Значит, ровно столько дерева было удалено в процессе работы.
10. На рисунке показано, куда следует сдвинуть три стрелы на доске у входа в таверну «Шашки», чтобы при этом ни одна стрела не лежала на одной прямой ни с одной другой стрелой. Черные точки указывают первоначальное расположение передвинутых стрел.
11. Поскольку карт, составляющих слова CANTERBURY PILGRIMS, восемнадцать, выпишем по кругу числа от 1 до 18, как показано на рисунке. Затем напишем первую букву С рядом с 1, а каждую следующую букву рядом со следующим вторым числом, которое окажется свободным[30]. Так следует поступать до второго К включительно. Если читатель закончит процесс, помещая Y рядом с 2, Р — рядом с 6, I — рядом с 10 и т. д., то он получит при этом буквы, идущие в следующем порядке: CYASNPTREIRMBLUIRG. Это и есть требуемый порядок с буквой С на верху колоды и G внизу ее.
30
Разумеется, эти числа должны идти через одно; так, следующим после 1 вторым свободным числом окажется 3, затем 5 и т. д. —