Выбрать главу

12. Эта головоломка сводится к нахождению наименьшего числа, обладающего 64 делителями, включая 1 и само число. Таким наименьшим числом будет 7560. Следовательно, паломники могут ехать гуськом, пара за парой, тройка за тройкой, четверка за четверкой и т. д. 64 способами, причем последним способом будет 7560 всадников в ряд. Купец был осторожен, не упомянув, по какой дороге ехали всадники.

Для того чтобы найти число делителей данного числа N, положим N = ар bq сr..., где а, b, с — простые числа. Тогда число делителей, куда включены 1 и само N, будет равно (р + 1) (q + 1) (r + 1)...

Таким образом, в случае головоломки Купца

7560 = 23 х 33 х 5 х 7

степени — 3 3 1 1

следовательно, всего имеется 4×4×2×2 = 64 делителя.

Чтобы найти наименьшее число с данным числом делителей, мы должны воспользоваться методом проб и ошибок. Однако важно порой следить за тем, чтобы число имело данное число делителей, но не большее. Например, наименьшим числом с 7 делителями будет 64, хотя 24 обладает 8 делителями, а тем самым и 7. Требование «не большее» в данном случае необязательно, поскольку не существует чисел, меньших 7560 и обладающих числом делителей, превышающим 64.

13. Наименьшее число шагов, за которое можно нужным образом расположить узников, равно 26. Узники передвигаются в следующем порядке: 1, 2, 3, 1, 2, 6, 5, 3, 1, 2, 6, 5, 3, 1, 2, 4, 8, 7, 1, 2, 4, 8, 7, 4, 5, 6. Поскольку свободной всегда оказывается только одна темница, эти обозначения не могут вызвать недоразумений.

Эту диаграмму можно упростить с помощью так называемого метода «пуговок и веревочек». В результате получатся диаграммы, изображенные на рисунке, которые намного упростят решение. В случае А можно использовать фишки, в случае Б можно воспользоваться шахматными ладьями и уголком шахматной доски. В обоих случаях мы приходим к расположению за наименьшее возможное число шагов.

См. также решение головоломки 94.

14. На рисунке показано, как Ткач разрезал квадратный кусок прекрасной ткани на четыре части одинаковых формы и размера так, чтобы каждая часть содержала вышитого льва и замок неповрежденными.

15. Было 4 порции пирога и 4 порции печеночного паштета, которые следовало распределить между 8 из 11 паломников. Но 5 из этих 11 хотят есть только пирог, 4 — только паштет, а 2 — и то и другое блюдо. Любая возможная комбинация должна попасть в одну из следующих групп: 1) пирог распределяется целиком между первыми пятью из упомянутых паломников; 2) только одному из «всеядной» пары дается пирог; 3) пирог дается другому из этой пары; 4) пирог дается обоим из этой пары. Число возможных комбинаций соответственно равно: 1) 75; 2) 50; 3) 10; 4) 10, что в общей сложности дает 145 способов выбора восьми участников. В большинстве случаев называют ответ 185, просмотрев то обстоятельство, что в сорока случаях в группе (3) еду получают те же самые 8 гостей, что и в группе (2), хотя «всеядная» пара и ест предложенные блюда по-разному. Именно в этом месте просчиталась вся компания.

16. Числом, которое Пристав церковного суда назвал по секрету Батской ткачихе, было 29, а начать счет ей следовало с Доктора медицины, который стоял непосредственно справа от нее. Первый раз 29 выпадает на Шкипера, который выходит из круга. Второй раз счет падает на Доктора, который выбывает следующим. Оставшиеся три раза счет выпадает соответственно на Повара, Пристава и Мельника. Следовательно, все леди остались бы на ночлег в таверне, если бы не роковая ошибка доброй ткачихи. Вместо 29 можно было бы взять любое кратное 2520 плюс 29, причем счет следовало начинать с Доктора.

17. Монах мог поместить собак в конуры 2926 различными способами так, чтобы на каждой стороне было по 10 собак. Число собак может изменяться от 20 до 40; в этих пределах всегда можно расположить собак нужным способом.

Решение этой головоломки в общем виде непросто. В случае n собак на каждой стороне квадрата число различных способов равно

при п нечетном и

при n четном, если считать только те размещения, которые существенно различны. Но если мы будем считать все перевернутые и отраженные размещения различными, как и поступал сам Монах, то n(четное или нечетное) собак можно разместить