63. Объяснение тайны Корнуоллского утеса оказалось очень простым. И все же это был ловкий трюк, придуманный двумя преступниками, который увенчался бы полным успехом, не появись неожиданно наши друзья из Клуба головоломок. Вот как это происходило. Когда Лэмсон и Марш достигли подъема, Марш один взошел на вершину утеса с большими башмаками Лэмсона в руках. Добравшись до края утеса, он поменял ботинки и задом наперед спустился по склону, неся на этот раз в руках свои собственные ботинки. Поэтому меньшие следы имеют более глубокий отпечаток на пятке, а большие следы — на носке; человек сильнее наступает на пятку, когда идет прямо, и делает упор на носки, когда движется задом наперед. Это также согласуется с тем обстоятельством, что большие следы иногда наступали на меньшие, но никогда наоборот, а также с тем, что большие следы совершали более короткие шаги, поскольку человек, двигаясь задом наперед, всегда делает шаг короче. Записная книжка была подброшена нарочно, чтобы полиция обратила внимание на следы и пошла по ложному пути.
64. Рассел обнаружил, что имеется ровно 12 пятизначных чисел, обладающих тем свойством, что произведение первых двух его цифр на три оставшиеся (все цифры различны и среди них нет нуля) дает число, состоящее из тех же самых пяти цифр, идущих в другом порядке. Но только одно из этих 12 чисел начиналось с 1, а именно 14 926. Далее, если мы умножим 14 на 926, то получим 12 964, число, состоящее из тех же цифр. Следовательно, номер автомобиля был 14 926.
Остальные одиннадцать чисел — это 34 651, 42 678, 51 246, 57 834, 75 231, 78 624, 87 435, 72 936, 65 281, 65 983 и 86 251. (См. также задачи 93 и 101.)
65. На рисунке видно, что существуют два различных способа, с помощью которых можно начертить пути людей в Вороньем парке. Это зависит от того, пошел ли дворецкий Е на север или на юг от домика егеря и обошел ли егерь А дом ЕЕ с севера или с юга. Но можно заметить, что единственными людьми, приближавшимися к мистеру Хастингсу, не пересекая пути, были дворецкий Е и человек, вошедший через ворота С. Однако известно, что дворецкий отправился спать за пять минут до полуночи, тогда как мистер Хастингс оставался до полуночи у приятеля. Следовательно, преступником должен быть человек, вошедший в парк через ворота С.
66. Площадь поля имеет от 17 до 18 квадратных фарлонгов, точнее, 17,937254 квадратного фарлонга, или 179,37254 акра. Если бы расстояния от последовательных углов равнялись соответственно 3, 2 и 4 фарлонгам, то площадь поля составляла бы 209,70537 акра.
Один из способов решения данной задачи состоит в следующем. Выразим площадь треугольника АРВ через сторону квадрата х. Удвоенный результат составит ху. Поделив его на х и возведя в квадрат, мы выразим у2 через х. Аналогично выразим z2 через х; затем решим уравнение у2 + z2 = 32, которое примет вид х4 — 20x2 = —37. Следовательно, х2 = 10 += 17,937254 квадратного фарлонга (очень точное приближение), а поскольку в одном квадратном фарлонге содержится десять акров, то это равно 179,37254 акра. Если мы возьмем отрицательный корень уравнения, то получим площадь поля в 20,62746 акра; в этом случае сокровища были бы зарыты вне поля, как показано на рис. 2. Но это решение исключено условием, гласящим, что сокровища зарыты на поле. Точные слова были: «В документе... говорится, что поле квадратное и что сокровища зарыты на нем...»
67. Ключом к решению головоломки служит тот факт, что если составлять магический квадрат из целых чисел, сумма которых равна 15, то 2 обязательно приходится помещать в одном из его углов. В противном случае числа должны быть дробными, а это и обеспечено в нашей головоломке использованием шестипенсовых монет и полукрон. Я привожу нужное расположение, в нем используются наименьшие ходящие в Англии монеты, сумма которых составляет 15. Можно заметить, что в каждом углу находится дробная сумма, тогда как требуемая сумма вдоль каждого из восьми направлений равна целому числу шиллингов.
68. Первая из этих головоломок основана на аналогичном принципе, хотя на самом деле она много проще, ибо условие, что девять марок должны быть различными, делает простым их выбор, хотя для того, чтобы их правильно разместить, требуется немного подумать и поэкспериментировать, прежде чем будет обнаружена закономерность, управляющая дробями в углах. На рисунке вы видите решение.