Вот итоговая таблица:
Я не пытался решить ту же задачу для настоящей доски 8 × 8, ибо, какой бы метод здесь не применялся, чтобы получить ответ, потребуется очень большая работа.
116. Решение показано на рисунке. Можно заметить, что каждая из четырех частей (после проведения разрезов вдоль жирных линий) имеет тот же размер и ту же форму, что и остальные, и, кроме того, содержит по льву и короне. Две из частей заштрихованы, дабы сделать решение более ясным для глаза.
117. Существует 15 различных способов разрезания доски 5 х 5 (с удаленной центральной клеткой) на две части одинаковых размеров и формы. Ограниченность места не позволяет мне привести здесь все соответствующие рисунки, но я помогу читателю нарисовать их самому без малейшего затруднения. В какой бы точке края вы ни начали разрез, заканчиваться он должен в точке, симметричной с ней относительно центра доски. Так, если вы начинаете разрез в точке 1 (рис. слева) вверху, то заканчивать его вы должны в нижней точке 1.
Далее 1 и 2 — единственные две существенно различные точки начала; если мы начнем разрез в других точках, то получим такие же решения. Направления разрезов в упомянутых 15 способах указаны на рисунке числами. То, что эти числа повторяются дважды, не приведет к недоразумению, ибо каждое последующее число расположено рядом с предыдущим. Любое направление, которое вы изберете при движении сверху вниз, должно быть повторено при движении снизу вверх; одно направление служит точным отражением другого (точнее, переходит в него при повороте доски на 180° вокруг центра).
Можно заметить, что четвертое направление (1, 4, 3, 7, 10, 6, 5, 9) совпадает с показанным на рисунке справа. Тринадцатое совпадает с решением, приведенным при формулировке задачи, где разрез начинается с боковой стороны, а не сверху доски. Части, однако, окажутся одинаковой формы, если их перевернуть другой стороной кверху, что, как указывалось в условии, не приводит к новому решению.
118. Способ разрезания доски таким образом, чтобы все 4 части оказались одинаковых размеров и формы и содержали по одному драгоценному камню, показан на рисунке. Клетки двух частей заштрихованы, чтобы сделать решение более наглядным. Быть может, читателю будет небезынтересно сравнить эту головоломку с задачей 14 настоящей книги.
119. Монах, «искушенный в тайных науках», указал отцу Джону, что распоряжение аббата можно легко выполнить, заделав 12 просветов. Они показаны на схеме черными квадратами.
Отец Джон настаивал на том, чтобы заделать 4 угловых просвета, но мудрец объяснил, что желательно заделать не больше просветов, чем это совершенно необходимо, и сказал, предвосхищая лорда Дандриери:
— Единственное стекло может располагаться на одной прямой с самим собой не более чем единственная птица может залететь в угол и толпиться там в одиночестве.
В условии аббата говорилось, чтобы ни одна прямая не содержала нечетного числа просветов.
Когда святой отец увидел сделанное, он остался очень доволен и сказал:
— Воистину, отец Джон, ты человек глубокой мудрости, ибо ты сделал то, что казалось невозможным, да еще при этом украсил наше окно крестом святого Андрея, чье имя я получил от моих крестных.
После этого он крепко заснул и на утро поднялся освеженным. Это окно можно было бы и сейчас увидеть целым в монастыре святого Эдмондсбери, если бы он существовал!
120. Максимальное число частей равно 18. Я привожу здесь два решения. Доска с цифрами разрезана таким образом, что восемнадцатая часть имеет при заданных условиях максимальную площадь (8 клеток). Второй вариант выполнен с тем условием, чтобы ни одна из частей не содержала более пяти клеток.