168. Наименьшее возможное число ходов, считая каждый ход по отдельности, равно 16. Но головоломку можно решить за 7 перемещений, если действовать следующим образом (любое число последовательных ходов одной лягушки считается одним перемещением). Все ходы, содержащиеся в одних скобках, образуют одно перемещение: (1—5), (3—7, 7—1), (8—4, 4—3, 3—7), (6—2, 2—8, 8—4, 4—3), (5—6, 6—2, 2—8), (1—5, 5—6), (7—1).
Это хорошо известная старая головоломка Гуарини, предложенная в 1512 г., и я привел ее здесь, дабы объяснить мой метод «пуговиц и веревочек» для решения этого класса задач с передвигающимися шашками. В случае А показана старая форма головоломки Гуарини, где требуется поменять местами черных коней с белыми. В задаче о «четырех лягушках» возможные направления ходов показаны прямыми линиями, дабы избавиться от необходимости объяснять неискушенным читателям природу ходов коня на шахматной доске. Но сразу же ясно, что две задачи эквивалентны. Центральной клеткой, разумеется, можно пренебречь, поскольку ни один конь не сможет в нее попасть. Теперь будем рассматривать грибки как пуговицы, а соединяющие их прямые как веревочки (см. случай Б). Тогда, расцепив веревочки, мы представим диаграмму в форме, показанной в случае В, где связи между пуговицами такие же, как и в случае Б, любое решение В приложимо к Б и А. Поставьте ваших белых коней на 1 и 3, а ваших черных — на 6 и 8 в диаграмме В, и простота решения станет совершенно очевидной. Вам нужно просто передвинуть коней по кругу в одном или в другом направлении. Сделайте приведенные выше ходы, и вы увидите, что не осталось ни малейших затруднений.
В случае Г я привел другую известную головоломку, впервые появившуюся в книге «Маленькие приключения Жерома Шарпа», изданной в Брюсселе в 1789 г. Поместите 7 шашек на 7 из 8 кружков следующим образом. Вы должны всегда ставить шашку на свободный кружок, а затем оттуда передвигать ее вдоль прямой, ведущей из этого кружка, в следующее свободное место (в любом направлении), где и оставлять шашку. Продолжайте действовать таким образом, пока все шашки не будут размещены. Помните, что вы ставите шашку на свободный кружок, а затем передвигаете ее на другой кружок, который тоже должен оказаться свободным. Теперь с помощью метода «пуговиц и веревочек» мы можем преобразовать нашу диаграмму, как в случае Д, после чего решение становится очевидным. «Всегда ходите на кружок, с которого вы передвигали шашку на предыдущем ходу». Это, конечно, не единственный способ, но простейшее решение, которое приходит на ум.
Существует несколько головоломок в этой книге, при решении которых данный метод может оказаться полезным.
169. Наиболее трудное место, которое должен выяснить для себя читатель, приступая к данной головоломке, состоит в том, чтобы решить, являются ли заштрихованные шашки (те, что находятся на правильных местах) просто «пустышками», не имеющими существенного отношения к делу. Из ста человек девяносто девять придут к выводу, что совершенно бесполезно передвигать какую-то из этих шашек, но здесь-то они и окажутся не правы.
Наикратчайшее решение в случае, если не передвигать заштрихованные шашки, состоит из 32 ходов. Однако головоломку удается решить всего за 30 ходов. Трюк состоит в том, чтобы передвинуть 6 (или 15) на втором ходу и вернуть ее на место на девятнадцатом. Полное решение таково: 2, 6, 13, 4, 1, 21, 4, 1, 10, 2, 21, 10, 2, 5, 22, 16, 1, 13, 6, 19, 11, 2, 5, 22, 16, 5, 13, 4, 10, 21. Всего 30 ходов.
170. Существует 80 различных расположений, образующих правильный путь коня, но только 40 из них можно достичь без того, чтобы два человека одновременно оказывались в одной камере. Наибольшее число людей, не участвующих в перемещениях, равно 2, и хотя путь коня можно устроить таким образом, чтобы оставить в исходных положениях 7 и 13, 8 и 13, 5 и 7 или 5 и 13, следующие четыре расположения, где неподвижными остаются 7 и 13, — единственные, которых можно достичь при заданных условиях. Следовательно, нужно найти наименьшее число ходов, приводящее к одному из этих расположений. Это, разумеется, нелегко сделать, и нельзя предложить никаких четких правил, приводящих к нужному ответу. Во многом здесь дело сводится к личному мнению, терпеливому экспериментированию и острому глазу по отношению к расположению и поворотам!