Выбрать главу

Теперь посмотрим, как составляют таблицу логарифмов. Работа начинается с последовательных извлечений квадрат­ного корня из 10. Результат можно увидеть в табл. 22.1. Показатели степеней записаны в ее первом столбце, а числа 10S— в третьем. Ясно, что 101=10. Возвести 10 в половинную степень легко — это квадратный корень из 10, а как извлекать квадратный корень из любого числа, знает каждый. Итак, мы нашли первый квадратный корень; он равен 3,16228. Что это дает? Кое-что дает.

Таблица 22.1 · последовательные извлечения

КВАДРАТНОГО КОРНЯ ИЗ 10

Мы уже можем сказать, чему равно 100,5, и знаем по крайней мере один логарифм. Логарифм числа 3,16228 очень близок к 0,50000. Однако нужно еще приложить неболь­шие усилия: нам нужна более подробная таблица. Извлечем еще один квадратный корень и найдем 101/4,что равно 1,77828. Теперь мы знаем еще один логарифм: 1,250— это логарифм числа 17,78; кроме того, мы можем сказать, чему равно 100,75: ведь это 10(0,5+0,25), т. е. произведение второго и третьего чисел из третьего столбца табл. 22.1. Если сделать первый столбец таблицы достаточно длинным, то таблица будет содержать поч­ти все числа; перемножая числа из третьего столбца, мы полу­чаем 10 почти в любой степени. Такова основная идея таблиц. В нашей таблице содержится десять последовательных корней из 10; основной труд по составлению таблицы вложен в вычис­ления этих корней.

Почему же мы не продолжаем повышать точность таблиц дальше? Потому что мы кое-что уже подметили. Возведя 10 в очень малую степень, мы получаем единицу с малой добавкой. Это, конечно, происходит потому, что если возвести, например, 101/1000 в 1000-ю степень, то мы снова получим 10; ясно, что `01/1000 не может быть большим числом: оно очень близко к еди­нице. Более того, малые добавки к единице ведут себя так, буд­то их каждый раз делят на 2; поглядите-ка на таблицу повни­мательнее: 1815 переходит в 903, потом в 450, 225 и т. д. Таким образом, если вычислить еще один, одиннадцатый, квадратный корень, он с большой точностью будет равен 1,00112, и этот результат мы угадали еще до вычисления. Можно ли сказать, какова будет добавка к единице, если возвести 10 в степень D/1024, когда D стремится к нулю? Можно. Добавка будет приблизительно равна 0,0022511D. Конечно, не в точности 0,0022511 D; чтобы вычислить эту добавку поточнее, делают та­кой трюк: вычитают из 10Sединицу и делят разность на показа­тель степени s. Отклонения полученного таким образом част­ного от его точного значения одинаковы для любой степени s. Видно, что эти отношения (см. четвертый столбец табл. 22.1) примерно равны. Сначала они все-таки сильно отличаются друг от друга, но потом все ближе подходят друг к другу, явно стремясь к какому-то числу. Что это за число? Проследим, как меняются числа четвертого столбца, если опускаться вниз по столбцу. Сначала разность двух соседних чисел равна 0,0211, потом 0,0104, потом 0,0053 и, наконец, 0,0026. Разность каждый раз убывает наполовину. Сделав еще один шаг, мы доведем ее до 0,0013, потом до 0,0007, 0,0003, 0,0002 и, наконец, примерно до 0,0001; надо последовательно делить 26 на 2. Таким обра­зом, мы спустимся еще на 26 единиц и найдем для предела

2.3025. (Позднее мы увидим, что правильнее было бы взять

2.3026. но давайте возьмем то, что у нас получилось.) Пользуясь этой таблицей, можно возвести 10 в любую степень, если ее показатель каким угодно способом выражается через 1/1024. Теперь легко составить таблицу логарифмов, потому что все необходимое для этого мы уже припасли. Процедура этого изо­бражена в табл. 22.2, а нужные числа берутся из второго и третьего столбцов табл. 22.1.

Таблица 22.2 · ВЫЧИСЛЕНИЯ log102

Предположим, что мы хотим знать логарифм 2. Это значит, что мы хотим знать, в какую степень надо возвести 10, чтобы получить 2. Может быть, возвести 10 в степень 1/2? Нет, полу­чится слишком большое число. Глядя на табл. 22.1, можно ска­зать, что нужное нам число лежит между 1/4 и 1/2. Поиск его начнем с 1/4;разделим 2 на 1,788..., получится 1,124...; при де­лении мы отняли от логарифма двух 0,250000, и теперь нас интересует логарифм 1,124.... Отыскав его, мы прибавим к результату 1/4=256/1024. Найдем в табл. 22.1 число, которое бы при движении по третьему столбцу сверху вниз стояло сразу за 1,124... . Это 1,074607. Отношение 1,124... к 1,074607 равно 1,046598. В конце концов мы представим 2 в виде произведения чисел из табл. 22.1: