Выбрать главу

2=(1,77828)·(1,074607)·(1,036633) · (1,0090350)·(1,000573).

Для последнего множителя (1,000573) в нашей таблице места не нашлось; чтобы найти его логарифм, надо представить это число в виде 10D/1024»1+2,3025D/1024. Отсюда легко найти, что D=0,254. Таким образом, наше произведение мож­но представить в виде десятки, возведенной в степень 1/1024 (256+32+16+4+0,254). Складывая и деля, мы полу­чаем нужный логарифм: log102=0,30103; этот результат верен до пятого десятичного знака!

Мы вычисляли логарифмы точно так же, как это делал мистер Бриггс из Галифакса в 1620 г. Закончив работу, он сказал: «Я вычислил последовательно 54 квадратных корня из 10». На самом деле он вычислил только 27 первых корней, а потом сделал фокус с D. Вычислить 27 раз квадратный корень из 10, вообще-то говоря, немного сложнее, чем 10 раз, как это сделали мы. Однако мистер Бриггс сделал гораздо большее: он вычислял корни с точностью до шестнадцатого десятичного знака, а когда опубликовал свои таблицы, то оставил в них лишь 14 десятичных знаков, чтобы округлить ошибки. Соста­вить таблицы логарифмов с точностью до четырнадцатого деся­тичного знака таким методом — дело очень трудное. Зато це­лых 300 лет спустя составители таблиц логарифмов занимались тем, что уменьшали таблицы мистера Бриггса, выкидывая из них каждый раз разное число десятичных знаков. Только в последнее время при помощи электронных вычислительных ма­шин оказалось возможным составить таблицы логарифмов не­зависимо от мистера Бриггса. При этом использовался более эффективный метод вычислений, основанный на разложении логарифма в ряд.

Составляя таблицы, мы натолкнулись на интересный факт: если показатель степени e очень мал, то очень легко вычислить 10e; это просто 1+2,3025е. Это значит, что 10n/2,3025 =1+n для очень малых n. Кроме того, мы говорили с самого начала, что вычисляем логарифмы по основанию 10 только потому, что у нас на руках 10 пальцев и по десяткам нам считать удобнее. Логарифмы по любому другому основанию получаются из ло­гарифмов по основанию 10 простым умножением. Теперь на­стало время выяснить, не существует ли математически выде­ленного основания логарифмов, выделенного по причинам, не имеющим ничего общего с числом пальцев на руке. В этой есте­ственной шкале формулы с логарифмами должны выглядеть проще. Составим новую таблицу логарифмов, умножив все логарифмы по основанию 10 на 2,3025.... Это соответствует пере­ходу к новому основанию — натуральному, или основанию е. Заметим, что loge (l+n)»n или еn»1+n, когда n®0.

Легко найти само число е; оно равно 101/2,3025 или 100,434294... Это 10 в иррациональной степени. Для вычисления е можно воспользоваться таблицей корней из 10. Представим 0,434294... сначала в виде 444,73/1024, а числитель этой дроби в виде суммы 444,73=256+128+32+16+2+0,73. Число е поэтому равно произведению чисел

(1,77828)·(1,33352)·(1,074607)·(1,036633)·(1,018152)X(1,009035)(1,001643) =2,7184.

(Числа 0,73 нет в нашей таблице, но соответствующий ему ре­зультат можно представить в виде 1+2,3025D и вычислить, чему равна D.) Перемножив все 7 сомножителей, мы получим 2,7184 (на самом деле должно быть 2,7183, но и этот результат хорош). Используя такие таблицы, можно возводить число в иррациональную степень и вычислять логарифмы иррацио­нальных чисел. Вот как надо обращаться с иррациональностями.

§ 5. Комплексные числа

Хотя мы хорошо поработали, все-таки есть еще уравнения, которые нам не под силу! Например, чему равен квадратный ко­рень из -1? Предположим, что это х, тогда х2=-1. Нет ни ра­ционального, ни иррационального числа, квадрат которого был бы равен -1. Придется снова пополнить запас чисел. Предполо­жим, что уравнение х2=-1 все же имеет решение, и обозначим это решение буквой i; число i имеет пока только одно свойство: будучи возведенным в квадрат, оно дает -1. Вот пока и все, что можно о нем сказать. Однако уравнение х2=-1 имеет два корня. Буквой i мы обозначили один из корней, но кто-нибудь может сказать: «А я предпочитаю иметь дело с корнем -i; моя буква i просто минус ваша i». Возразить ему нечего, пото­му что число i определяется соотношением i2=-1; это соотно­шение останется верным, если изменить знак i. Значит, любое уравнение, содержащее какое-то количество i, останется вер­ным, если сменить знаки у всех i. Такая операция называется комплексным сопряжением. Далее, ничто не мешает нам полу­чать новые числа вот так: сложить i несколько раз, умножить i на какое-нибудь наше старое число, прибавить результат умно­жения к старому числу и т. д. Все это можно сделать, не на­рушая ранее установленных правил. Таким образом мы при­ходим к числам, которые можно записать в виде p+iq, где p и q — числа, с которыми мы имели дело ранее, их называют действительными числами. Число i называют мнимой единицей, а произведение действительного числа на мнимую единицу — чисто мнимым числом. Самое общее число а имеет вид a=p+iq, и его называют комплексным числом. Обращаться с комплекс­ными числами несложно; например, нам надо вычислить произ­ведение (r+is)(p+q). Вспомнив о правилах, мы получим