Выбрать главу

А как обстоит дело с периодом? Давайте найдем его. В ка­кую степень надо возвести е, чтобы получить i? Иными словами, чему равен логарифм i по основанию е? Мы вычислили уже ло­гарифм i по основанию 10; он равен 0,68226i; чтобы перейти к основанию е, мы умножим это число на 2,3025 и получим 1,5709. Это число можно назвать «алгебраическим p/2». Но по­глядите-ка, оно отличается от настоящего p/2 всего лишь послед­ним десятичным знаком, и это просто-напросто следствие на­ших приближений при вычислениях! Таким образом, чисто ал­гебраически возникли две новые функции — синус и косинус; они принадлежат алгебре и только алгебре. Мы пошли по их сле­дам и обнаружили, что это те же самые функции, которые так естественно возникают в геометрии. Мы отыскали мост между алгеброй и геометрией.

Подводя итог нашим поискам, мы напишем одну из самых замечательных формул математики

eiq=cosq+isinq. (22.9)

Вот она, наша жемчужина.

Связь между алгеброй и геометрией можно использовать для изображения комплексных чисел на плоскости; точка на плос­кости определяется координатами х и у (фиг. 22.2).

Фиг. 22.2. Комплексное число как точка на плоскости.

Представим каждое комплексное число в виде x+iy. Если расстояние точки от начала координат обозначить через r, а угол радиуса-вектора точки с осью xчерез q, то выражение x+iy можно представить в виде rei9. Это следует из геометрических соотношений между х, у, r и q. Таким образом, мы объединили алгебру и геометрию. Начиная эту главу, мы знали только целые числа и умели их считать. Зато у нас была небольшая идея о могуществе шага в сторону и обобщения. Используя алгебраические «законы», или свойства чисел, сведенные в уравнения (22.1), и определения обратных операций (22.2), мы смогли создать не только новые числа, но и такие полезные вещи, как таблицы логарифмов, степеней и тригонометрические функции (они возникли при возведении действительных чисел в мнимые степени), и все это удалось сделать, извлекая много раз квадратный корень из десяти!

* Квадратный корень лучше всего извлекать не тем способом, кото­рому обычно учат в школе, а немного иначе. Чтобы извлечь квадратный корень из числа N, выберем достаточно близкое к ответу число а, вы­числим N/a и среднее а'=1/2[а+(N/а)]; это среднее будет новым числом а, новым приближением корня из N. Этот процесс очень быстро приводит к цели: число значащих цифр удваивается после каждого шага.

Глава 23

РЕЗОНАНС

§ 1. Комплексные числа и гармоническое движение

§ 2. Вынужденные колебания с торможением

§ 3. Электрический резонанс

§ 4. Резонанс в природе

§ 1. Комплексные числа и гармоническое движение

Мы снова будем говорить в этой главе о гармоническом осцилляторе, особенно об ос­цилляторе, на который действует внешняя си­ла. Для анализа этих задач нужно развить новую технику. В предыдущей главе мы ввели понятие комплексного числа, которое состоит из действительной и мнимой частей и которое можно изобразить на графике. Действительная часть числа будет изображаться абсциссой, а мнимая — ординатой. Комплексное число а можно записать в виде a=ar+iai; при такой записи индекс r отмечает действительную часть а, а индекс i — мнимую. Взглянув на фиг. 23.1, легко сообразить, что комплексное число a=x+iy можно записать и так: x+iy=rexp(iq), где r2=x2+y2=(x+iy)(x-iy)=aa * (а* — это комплексно сопряженное к а число; оно полу­чается из а изменением знака i).

Фиг. 23,1. Комплексное число, изображенное точкой на «комплек­сной плоскости».

Итак, комп­лексное число можно представить двумя спо­собами: явно выделить его действительную и мнимую части или задать его модулем r и фазо­вым углом q. Если заданы r и q, то х и у равны rcosq и rsinq, и, наоборот, исходя из числа x+iy, можно найти r=Ц(x2+y2)и угол q; tgq равен у/х (т. е. отношению мнимой и действи­тельной частей).