Выбрать главу

На фиг. 23.8 изображена кривая поглощения — типично резонансная кривая.

Фиг. 23.8. Зависимость потери, магнитной энергии в парамаг­нитном органическом соединении от напряженности приложенного поля.

Только получена она немного не так, как предыдущая. Частота горизонтального поля, управляющего ко­лебаниями, все время остается постоянной, хотя, казалось бы, экспериментатор, чтобы получить кривую, должен менять ча­стоту. Можно поступить и так, но технически легче оставить и неизменной, а менять напряженность постоянного поля, что соответствует изменению w0 в нашей формуле. Таким образом мы имеем дело с резонансной кривой для w0. Тем не менее мы получаем резонанс с определенными w0 и g.

Пойдем дальше. Следующий наш пример связан с атомным ядром. Движение протонов и нейтронов в ядре — в некотором смысле колебательное движение. Убедиться в этом можно при помощи такого эксперимента: давайте обстреливать ядра лития протонами. Мы обнаружим, что в ядрах при этом будут происхо­дить какие-то реакции, в результате которых возникает g-излучение. Кривая, изображающая количество испущенного из­лучения, имеет очень острый, типично резонансный максимум. Это изображено на фиг. 23.9. Однако приглядитесь к рисунку повнимательнее: на горизонтальной шкале отложена не частота, как обычно, а энергия! Дело в том, что та величина, которую в классической физике мы привыкли считать энергией, в кван­товой механике оказывается определенным образом связанной с частотой некоторой волны. Если в привычной нам крупномас­штабной физике при анализе какого-нибудь явления приходится иметь дело с частотой, то в квантовомеханических явлениях, связанных с атомным веществом, аналогичные кривые будут зависеть от энергии. Кривая на фиг. 23.9 иллюстрирует эту связь. Размышляя над этой кривой, можно прийти к мысли, что частота и энергия имеют глубокую взаимосвязь; так оно и есть на самом деле.

Вот еще одна резонансная кривая, полученная в результате опытов с атомными ядрами; она очень узкая, уже всех предыду­щих. На фиг. 23.10 величина w0 соответствует энергии 10 000 эв, а ширина g равна приблизительно 10-5 эв; иначе говоря, Q=1010!

Фиг. 23.10. Кривая поглощения g-излучения, полученная Р. Мёссбауэром.

Построив такую кривую, экспериментатор измерил Q самого добротного из ныне известных осцилляторов. Это проделал Р. Мёссбауэр, получивший за свои работы Нобелевскую пре­мию. На горизонтальной шкале отложена скорость, потому что для сдвига частоты использовался эффект Допплера, получаю­щийся в результате относительного движения источника и по­глотителя. Цифры дают некоторое представление о тонкости эксперимента — пришлось измерять скорости в несколько сан­тиметров в секунду! Если продолжить горизонтальную шкалу влево, то нулевую частоту мы найдем на расстоянии 1010 см! Страницы для этого, пожалуй, не хватит!

Наконец, возьмем какой-нибудь выпуск журнала Physical Review, скажем, за 1 января 1962 г. Найдется ли в нем резонансная кривая? Резонансные кривые имеются непременно в каждом выпуске этого жур­нала, и на фиг. 23.11 изоб­ражена одна из таких кри­вых.

Фиг. 23.11. Зависимость эф­фективных сечений реакций от величины момента количества дви­жения.

Нижняя кривая описывает нерезонанс­ный фон; верхняя кривая показывает, что на зтот фон наложено резонансное сечение.

Это очень интересная кривая. Она соответствует ре­зонансу в реакциях со стран­ными частицами (K--мезоны и протоны). Резонанс был об­наружен при измерении ко­личества частиц разных сор­тов, получающихся в резуль­тате реакции. Разным про­дуктам реакции соответствуют разные кривые, но в каждой из них при одной и той же энергии есть пики примерно одинаковых очертаний. Зна­чит, при определенной энергии K--мезона существует резо­нанс. При столкновении К--мезонов и протонов, наверное, создаются благоприятные для резонанса условия, а может быть, даже новая частица. Сегодня мы еще не можем сказать, что такое эти выбросы в кривых — «частица» или просто ре­зонанс. Очень узкий резонанс соответствует очень точно от­меренному количеству энергии; это бывает тогда, когда мы имеем дело с частицей. Когда резонансная кривая уширяется, то становится трудно сказать, с чем мы имеем дело — с части­цей, которая живет очень мало, или просто с резонансом в реак­ции. В гл. 2 мы отнесли эти резонансы к частицам, но когда писалась та глава, об этом резонансе еще не было известно, по­этому нашу таблицу элементарных частиц можно дополнить!