Фиг. 25.4. Сложную силу можно представить как последовательность коротких импульсов.
Такую силу можно представить в виде последовательных ударов молотком. Сначала всюду стоит тишина, потом кто-то берет в руки молоток и внезапно раздаются равномерные удары — удар, удар, удар, удар, ... и опять все тихо. Иначе говоря, непрерывно действующую силу можно представить в виде ряда последовательных импульсов, быстро следующих один за другим. Мы знаем последствия одного импульса, а последствием серии импульсов будет ряд затухающих колебаний; нарисуйте кривую колебаний для первого импульса, затем, немного отступя, такие же кривые для второго импульса, третьего и т. д. Потом сложите все кривые. Таким образом математически можно представить полное решение в случае произвольной силы, если можно решить задачу для импульса. Ответ для любой силы можно получить путем интегрирования. Это метод функции Грина. Функция Грина — это отклик системы на отдельный импульс, а метод функции Грина — это метод анализа действия силы суммированием откликов на импульсы.
Физические принципы, лежащие в основе обоих методов, очень просты; они просто напрашиваются, если понять смысл линейного уравнения, но математические методы содержат довольно сложные интегрирования и т. д.; мы мало подготовлены, чтобы прямо атаковать эти методы. К этому вы еще вернетесь, когда поднабьете руку в математике. Но сама идея методов, право, очень проста.
Наконец, скажем еще, почему линейные системы так важны. Ответ прост: потому что мы умеем решать линейные уравнения! Поэтому большую часть времени мы будем решать линейные задачи. Вторая (и главная) причина заключается в том, что основные законы физики часто линейны. Например, уравнения Максвелла для законов электромагнетизма — линейные уравнения. Великие законы квантовой механики, насколько нам они известны, тоже сводятся к линейным уравнениям. Вот почему мы так много времени уделяем линейным уравнениям: если мы поняли линейные уравнения, мы готовы в принципе понимать очень многие вещи.
Упомянем еще другие ситуации, когда возникают линейные уравнения. Когда отклонения малы, многие функции можно приближенно заменить линейными. Например, точное уравнение движения маятника гласит
d2q/dt2=-g/Lsinq. (25.9)
Это уравнение решается при помощи эллиптических функций, но легче его решить численно, как мы это делали в гл. 9 (вып. 1) при изучении ньютоновых законов движения. Большинство нелинейных уравнений вообще можно решить лишь численно. Для малых углов sinq практически равен q, и в этом случае можно перейти к линейному уравнению. На этом примере можно сообразить, что есть много обстоятельств, при которых малые эффекты линейны (здесь это отклонения маятника на малые углы). Другой пример: если на пружине качается небольшой грузик, сила пропорциональна растяжению пружины. Если сильно потянуть за пружину, она может и порваться, значит, в этом случае сила совсем иначе зависит от расстояния! Линейные уравнения очень важны. Они настолько важны, что физики и инженеры, пожалуй, половину своего времени тратят на решение линейных уравнений.
§ 3. Колебания в линейных системах
Давайте вспомним, о чем мы говорили в нескольких последних главах. Физику колебательных движений очень легко затемнить математикой. На самом-то деле здесь физика очень проста, и если на минуту забыть математику, то мы увидим, что понимаем почти все, что происходит в колебательной системе.
Во-первых, если мы имеем дело только с пружинкой и грузиком, то легко понять, почему система колеблется — это следствие инерции. Мы оттянули массу вниз, а сила тянет ее назад; наступает момент, когда сила равна нулю, но грузик не может остановиться мгновенно: у него есть импульс, который заставляет его двигаться. Теперь пружинка тянет грузик в другую сторону, грузик начинает двигаться взад и вперед. Итак, если бы не было трения, то, несомненно, получилось бы колебательное движение, и так оно и есть на самом деле. Но достаточно незначительного трения, чтобы размах следующих колебаний стал меньше, чем раньше.
Что случится потом, после многих циклов? Это зависит от характера и величины трения. Предположим, что мы придумали такое устройство, что при изменении амплитуды сила трения оказывается пропорциональной другим силам — инерции и натяжению. Иначе говоря, при малых колебаниях трение слабее, чем при колебаниях с большой амплитудой. Обычно сила трения таким свойством не обладает, так что можно предположить, что в нашем случае действуют силы трения особого рода — силы, пропорциональные скорости; тогда для больших колебаний эти силы будут больше, а для малых — меньше. Если у нас именно такой вид трения, то в конце каждого цикла система будет находиться в тех же условиях, что и в начале цикла, только всего будет меньше. Все силы будут меньше в тех же пропорциях: сила пружинки немного ослабнет, инерциальные эффекты будут меньше. Ведь теперь и ускорения грузика будут меньше, и сила трения ослабеет (об этом мы позаботились, создавая наше устройство). Если бы мы имели дело с такими силами трения, то увидели бы, что каждое колебание в точности повторяет первое, только амплитуда его стала меньше. Если после первого цикла амплитуда составляла, например, 90% первоначальной, то после второго цикла она будет равна 90% от 90% и т. д., т. е. размах колебаний после каждого цикла уменьшается в одинаковое число раз. Кривая, ведущая себя таким образом,— это экспоненциальная функция. Она изменяется в одинаковое число раз на любых интервалах одинаковой длины. Иначе говоря, если отношение амплитуды одного цикла к амплитуде предыдущего равно а, то такое же отношение для второго цикла равно а2, затем а3 и т. д. Таким образом, амплитуда колебаний после n циклов равна