Наконец, подумаем, что произойдет при очень большом трении. Ясно, что, если трение очень велико, система вообще не осциллирует. Энергии пружинки едва-едва хватит на борьбу с силами трения, и грузик будет медленно ползти к положению равновесия.
§ 4. Аналогии в физике
Продолжая обзор, заметим, что массы и пружинки — это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналогичные механическим системам. Мы не старались до конца выяснить, почему каждая часть электрической цепи работает так, а не иначе; это нам еще трудно понять. Можно просто поверить, что то или иное поведение каждого элемента цепи можно подтвердить экспериментально.
Возьмем для примера простейшее устройство. Приложим к куску проволоки (сопротивлению) разность потенциалов V. Это значит, что если от одного конца проволоки до другого проходит заряд q, то при этом совершается работа qV. Чем выше разность потенциалов, тем большая работа совершается при «падении» заряда с высокопотенциального конца проволоки на низкопотенциальный. Заряды, проходя с одного конца проволоки на другой, выделяют энергию. Но зарядам не так-то просто плыть вдоль проволоки: атомы проволоки оказывают сопротивление потоку, и это сопротивление подчиняется закону, справедливому почти для всех обычных материалов: ток I пропорционален приложенной к проволоке разности потенциалов. Иначе говоря, число зарядов, проходящих через проволоку за 1 сек, пропорционально силе, с которой их толкают:
V=IR=R(dq/dt), (25.11)
Коэффициент R называют сопротивлением, а само уравнение— законом Ома. Единица сопротивления — ом; он равен отношению одного вольта (1 в) к одному амперу (1 а). В механических устройствах очень трудно отыскать силу трения, пропорциональную скорости, а в электрических цепях — это дело обычное и закон Ома справедлив для большинства металлов с очень высокой точностью.
Нас интересует, много ли совершается работы за 1 сек при прохождении зарядов по проволоке (эту же величину можно назвать потерей мощности или выделяемой зарядами энергией)? Чтобы прогнать заряд q через разность потенциалов V, надо совершить работу qV; таким образом, работа за 1 сек равна V(dq/dt), или VI. Это выражение можно записать иначе: IR·I=I2R. Эту величину называют тепловыми потерями; вследствие закона сохранения энергии, такое количество теплоты производит в 1 сек сопротивление проволоки. Эта теплота накаляет проволоку электрической лампы.
У механических устройств есть, конечно, и другие интересные свойства, например, такие, как масса (инерция). В электрических цепях, оказывается, тоже существуют аналоги инерции. Можно построить прибор, называемый индуктором, а свойство, которым он обладает, носит название индуктивность. Ток, попадающий в такой прибор, не хочет останавливаться. Чтобы изменить ток, к этому прибору нужно приложить разность потенциалов. Если по прибору течет постоянный ток, то падения потенциалов нет. Цепи с постоянным током ничего «не знают» об индуктивности; эффекты индуктивности обнаруживаются только при изменениях тока. Описывающее эти эффекты уравнение гласит;
V=L(dI/dt)=L(d2q/dt2), (25.12)
а индуктивность измеряется в единицах, которые называются генри (гн). Приложенная к прибору с индуктивностью в 1 гн разность потенциалов в 1 в изменяет ток на 1 а/сек. Уравнение (25.12), если хотите,— электрический аналог закона Ньютона: V соответствует F, L соответствует т, а I — скорости!
Все последующие уравнения, описывающие обе системы, выводятся одинаково, потому что мы просто можем заменить буквы в уравнении для одной системы и получить уравнение для другой системы; любой вывод, сделанный при изучении одной системы, будет верен и для другой системы.