Предположим, что нужно собрать более сложную цепь из двух кусков, импедансы которых равны Z1 и Z2; соединим их последовательно (фиг. 25.6, а) и приложим напряжение.
Фиг. 25.6. Импедансы, соединенные последовательно (а) и параллельно (б).
Что случится? Задача немного сложнее предыдущей, но разобраться в ней нетрудно: если через Z1 течет ток I1, то падение напряжения на Z1 равно V1=IZ1, а падение напряжения на Z2 будет V2 = IZ2. Через оба элемента цепи течет одинаковый ток. Полное падение напряжения вдоль такой цепи равно V=V1+V2=(Z1+Z2)I. Таким образом, падение напряжения в такой цепи мощно записать в виде V=IZs, a Zs— импеданс системы, составленной из двух последовательно соединенных элементов, равен сумме импедансов отдельных элементов
Zs=Z1+Z2. (25.16)
Но это не единственный способ решения вопроса. Можно соединить отдельные элементы параллельно (фиг. 25.6,б). При таком соединении, если соединительные провода считать идеальными проводниками, к обоим элементам приложено одинаковое внешнее напряжение, а сила тока в каждом элементе не зависит от другого элемента. Ток через Z1 равенI1=V/Z1, ток в Z2 равен /2=V/Z2. Напряжение в обоих случаях одинаково. Полный ток через концы цепи равен сумме токов в отдельных частях цепи:
I=V/Z1+V/Z2. Это можно записать и так:
Таким образом,
Многие сложные цепи иногда становятся более понятными, если расчленить их на куски, выяснить, чему равны импедансы отдельных частей, а затем шаг за шагом следить за соединением частей, помня о только что выведенных правилах. Если мы собрали цепь из большого числа произвольно соединенных элементов и создаем в этой цепи разности потенциалов при помощи небольших генераторов, импедансом которых можно пренебречь (когда заряд проходит через генератор, то потенциал возрастает на V), то при анализе цепи можно использовать такие правила:
1) сумма токов, протекающих через любое соединение, равна нулю; ведь притекший к любому соединению ток должен обязательно вытечь из него;
2) если заряд, двигаясь по замкнутой петле, вернулся в то место, откуда начал путешествие, полная работа должна быть равна нулю.
Эти правила называются законами Кирхгофа. Систематическое применение этих правил часто облегчает анализ работы сложных цепей. Мы к ним вернемся, когда будем говорить о законах электричества.
* В новейших супергетеродинных приемниках дело, конечно, обстоит сложнее. Усилители приемника настроены на определенную промежуточную частоту; осциллятор с переменной настраивающейся частотой связан с входным сигналом нелинейной связью, порождая новую частоту (равную разности частот сигнала и осциллятора) —промежуточную частоту, которая и усиливается. Об этом мы поговорим в гл. 50 (вып. 4).
* Решения, которые нельзя выразить линейно одно через другое, называются независимыми решениями.