Выбрать главу

Раскрытие законов развития астрономических объектов представляет собой главную трудность этой науки. Современная астрономия рассматривает свои объекты не только в их стационарном, но и в нестационарном состояниях, в развитии. Поэтому, рассматривая эволюцию материи, необходимо анализировать как законы функционирования, так и законы развития. Законы строения и функционирования позволяют отражать моменты покоя и устойчивости в движении астрономических объектов, а законы развития выражают изменчивость их, необратимость, направленность происходящих в космосе изменений.

Принцип развития в астрономии мы рассмотрим в двух планах: а) в плане диалектики развития астрономических объектов и б) в плане диалектики развития астрономического знания. Каждой стадии развития объектов соответствует своя теория, а последовательности усложняющихся объектов (звезды и их системы — галактики и их системы) соответствует последовательность усложняющихся теорий, развитию астрономических объектов соответствует развитие астрономического знания. Но вследствие относительной самостоятельности развития познания и знания (они обусловлены предыдущим знанием, а также уровнем развития практики соответствующей эпохи, характером деятельности отдельных исследователей) астрономическое знание развивалось не всегда соответственно этапам развития астрономических объектов.

С XVI по начало XX в. ученые изучали местонахождение и происхождение звезд, в том числе и Солнца, оперируя масштабами расстояний в миллиарды световых лет. Они наблюдали космос далеко за пределами орбит планет и обнаружили множество звезд и галактик, сосредоточенных во Вселенной. Новые открытия в современной астрономии дополнили эту картину представлениями о взрывающихся галактиках и квазарах, черных и белых «дырах» эволюционирующей Вселенной.

Прежняя упорядоченная Вселенная, представлявшаяся древним и средневековым наблюдателям планетной системой, в центре которой находится Земля, а в послекоперниковский период — Солнце, превратилась в полный динамизма мир различных эволюционных процессов, а также продуктов дезинтеграции и распада больших космических систем. Современную астрономию интересует в первую очередь эволюция окружающего нас мира — от Вселенной в целом до отдельных звезд, которые входят в состав еще более крупных образований — галактик, образующих скопления. В 80-е годы XX в. все более отчетливо стали вырисовываться две концепции — «горячей» и «холодной» Вселенной. В первой развитие Вселенной связывается со взрывами, очень высокими температурами, космическими лучами больших энергий, необычными турбулентными взрывчатыми лавами в галактиках, новыми типами горячих (молодых) галактик. Основные достижения в астрономии XX в. связаны с теорией «горячей» Вселенной.

Рассмотрение диалектики становления Вселенной, вопроса об основных стадиях развивающихся астрономических объектов необходимо начать с исследования наиболее общего космологического объекта — Вселенной в целом, поскольку эволюция и звезд и галактик определяется в конечном счете эволюцией Вселенной. Астрофизики наблюдаемую с помощью приборов область Вселенной называют метагалактикой, а физики — мегамиром, подчеркивая тем самым ее качественное отличие от тех областей природы, которые изучаются различными разделами современной физики, от макро- и микромира[94]. Нестационарность метагалактики, ее расширение свидетельствует об определенной эволюции наблюдаемой области Вселенной.

Результаты исследования метагалактики, ее пространственно-временных (хроногеометрических) и причинностных (импульсно-энергетических) аспектов в рамках однородной модели Вселенной показывают:

1. Космическая материя в пространстве метагалактики распределена по различным структурным образованиям: звездам, галактикам и скоплениям галактик — «сверхгалактикам».

2. В больших масштабах плотность галактик и сверхгалактик, а следовательно, усредненная по всему объему метагалактики плотность вещества везде одинакова: метагалактика в среднем однородна.

3. Метагалактика не только однородна, но и изотропна, т. е. свойства ее объектов не зависят от направления в пространстве. На это указывает однородность реликтового излучения.

4. Метагалактика нестационарна: скопления галактик «разбегаются». При этом скорости «разбегания» пропорциональны расстояниям между галактиками, и это соотношение носит линейный характер (закон Хаббла).

5. «Искривленный» характер пространственно-временной структуры метагалактики выявляется не только в отдельных частях вблизи тяготеющих масс звезд или галактик (локальные искривления), но и в глобальном масштабе мегамира.

вернуться

94

См. Кармин А. С. К вопросу о предмете космологии. — Некоторые вопросы методологии научного исследования, вып. 2. Л, 1968, с. 71.