Выбрать главу

Критику ньютонова понимания пространства и времени с позиций диалектики впервые дал Гегель[114]. Отвергая ньютоновскую бесконечность образа прямой линии как метафизическую, оторванную от конечного, он противопоставил ей образ круга[115]. Рациональным моментом здесь выступает идея диалектического единства конечного и бесконечного. Ф. Энгельс отмечал: «Бесконечность есть противоречие, и она полна противоречий»[116].

Параллельно с этим критика ньютонова пространства и времени велась с точки зрения неевклидовой геометрии и теории относительности. Тем самым практика научного познания стихийно перешла ко второму уровню методологического анализа космологических моделей.

С появлением общей теории относительности с ньютоновской космологией стала конкурировать релятивистская космологическая теория. Возникновение последней связано с приложением уравнений тяготения А. Эйнштейна к космологии. Математическое решение уравнений общей теории относительности сводится к нахождению геометрии пространств Эйнштейна, представляющих собой римановы многообразия любого числа измерений и любой сигнатуры. Множество предложенных решений этих уравнений порождает миры открытые и замкнутые, конечные и бесконечные в метрическом отношении. Первая релятивистская космологическая модель была выдвинута Эйнштейном еще в 1917 г. Это была модель стационарной Вселенной, конечной, с положительной кривизной пространства. Ее аналогом является гиперцилиндр с бесконечной осью времени.

Предпринимавшиеся попытки критики такой модели с философской точки зрения основывались на мнении о том, что конечность Вселенной якобы противоречит материализму. Однако в действительности пространство Вселенной Эйнштейна и любых других конечных моделей релятивистской космологии безгранично. Следовательно, оно является всеобъемлющим пространством и не допускает возможности существования какого-либо «внешнего» по отношению к нему пространства. Тем самым и конечные модели Вселенной не противоречат материализму.

Для наглядности можно воспользоваться известным примером, приведенным Эйнштейном в беседе с сыном. Он сказал, что когда слепой жук ползет по кривой ветке, то не замечает, что она кривая. Продолжим этот образ. Представим ветку, изогнутую так, что ее конец смыкается с основанием. В таком случае мы получим конечное, но безграничное пространство, служащее одномерным аналогом пространству модели Эйнштейна. Ее недостаток заключается не в конечности, а в статичности.

В 1922 г. А. А. Фридман исправил этот недостаток, построив нестационарную модель Вселенной, подтвержденную впоследствии наблюдениями. В зависимости от плотности вещества она могла быть как открытой, так и замкнутой, как конечной, так и бесконечной. При расширении Вселенной плотность вещества может стать меньше критической, а положительная кривизна пространства сменится на отрицательную. В последнем случае пространство Вселенной будет бесконечным и подобным псевдосфере Лобачевского. В настоящее время показано, что конечность и бесконечность модели Вселенной в структуре космологической теории имеют характер постулатов. Следовательно, для выбора ее модели недостаточно лишь эмпирических критериев, необходимы еще философско-методологические критерии. Таким образом, на втором уровне анализа возникает проблема критериев выбора адекватной модели.

В множестве римановых многообразий конечное и бесконечное не совпадают с ограниченным и безграничным. Если бесконечность является метрическим свойством, то безграничность — топологическим. Проблема многообразия миров на этом уровне анализа рассматривается как множество миров с различными не только метрическими (расстояние, кривизна, темп «течения» времени), но и топологическими свойствами (размерность, связность, гомогенность, направленность времени). Например, в квантово-динамической топологии, разработанной Д. А. Уилером и его сотрудниками, мировое пространство и время представляют собой пенообразную структуру с неодносвязной (нетривиальной) топологией[117]. Однако диалектическое понимание конечного и бесконечного не сводится к метрическому и топологическому разнообразию пространственно-временных отношений.

А. Л. Зельманов высказал методологическое предположение о том, что во Вселенной реализуется все многообразие миров (явлений, условий, законов), допускаемое как старыми, так и новыми фундаментальными физическими теориями. Такое расширение концептуальной основы астрономии достигается, например, в квантовой космологии М. А. Маркова[118]. В ее основе лежит гипотетическая микрочастица «фридмон», представляющая собой целую Вселенную. Она «разомкнута» лишь на массу элементарной частицы и поэтому «внешним наблюдателем» воспринимается в качестве одного микрообъекта. В этом случае бесконечность приобретает теоретико-множественный смысл[119]. Конечный объект становится бесконечной Вселенной, а Вселенная — микрообъектом, что и приводит к тезису: «Все состоит из всего», а часть и целое выступают как «равномощные».

вернуться

114

См. Маркс К., Энгельс Ф. Соч., т. 20, с. 550–551.

вернуться

115

См. Гегель. Наука логики, т. 1, с. 309.

вернуться

116

Маркс К., Энгельс Ф. Соч., т. 20, с. 51.

вернуться

117

См. Уилер Дж. Предвидение Эйнштейна. М., 1970; Мизнер Ч., Уилер Дж. Законы сохранения и граница границы. — Гравитация. Проблемы и перспективы. Киев, 1972.

вернуться

118

См. Марков М. А. О природе материи. М., 1976, с. 141, 169.

вернуться

119

См. Ham Г. И. Понятие бесконечности в математике и космологии. Бесконечность и Вселенная, с. 44–45.