Выбрать главу

Действительно, еще в 1913 г. И. В. Мичурин разработал понимание доминантности, рассматривая ее как результат длительного влияния определенных исторических условий. Раньше доминантность трактовалась как некоторое постоянное свойство, и лишь в 1928 г. Р. Фишер пришел в основном к тому же выводу, что и И. В. Мичурин, вскрыв целесообразный характер доминирования нормальных аллелей над мутантными[246].

В результате появления такого рода работ и дискуссии, развернувшейся вокруг них, возникла новая отрасль генетики — эволюционная генетика, в рамках которой впервые был поставлен вопрос об эволюции самих явлений наследственности и изменчивости. Таким образом, с возникновением эволюционной генетики наследственность начинает рассматриваться не только как фактор эволюции, но и как объект эволюционных преобразований. Такой подход имеет большое эвристическое значение: он служит еще одним аргументом в пользу тезиса о материальном единстве органического мира, основывающемся на общности состава и строения молекулярных основ живого, а также на данных анализа их возникновения и развития. Становится все более очевидным, что многие теоретические проблемы молекулярной биологии не могут быть решены без помощи эволюционной теории, без диалектической идеи развития[247].

Необходимость исторического подхода обнаруживается и в понимании мутабильности (т. е. способности организма производить мутации), противоположные тенденции которой выявляют ее историческую сущность. Так, повышение уровня мутабильности, с одной стороны, способствует эволюционной пластичности, с другой — ведет к дезорганизации адаптивной нормы. Исторического осмысления требуют и такие явления, как плейтропизм (взаимодействие) генов, который представляет собой результат противоположных тенденций (целостности и мозаичности), линейное расположение генов, «чистота гамет», ограниченность поля действия единичной мутации[248]. Не меньшую роль исторический подход играет в определении значения кодовых «слоев» и в расшифровке информационной структуры нуклеиновых кислот[249].

Современная молекулярная генетика не может ответить на многие фундаментальные вопросы без привлечения идеи эволюции к объяснению природы «естественного языка», посредством которого происходит передача наследственной информации[250]. Концепция эволюции генетической системы в современной молекулярной генетике опирается на разработанную классификацию информационных «сообщений», предполагающую наличие иерархии рангов этих «сообщений» по принципу отношений между частью и целым (кодон — цистрон — оперон — репликон — сегрегон). Такое выделение уровней организации передачи наследственной информации позволяет не только объединить уровни управления в генетических системах (метаболический, оперонный, клеточный, онтогенетический и популяционный), но и показать ограниченность научных представлений о материальных основах наследственности, исходящих только из структурно-функционального анализа.

Таким образом, чтобы понять и научно объяснить любую структуру и функцию живых систем, необходимо представить их как результат исторического приспособительного процесса, адекватное отражение которого требует использования исторического метода как необходимого элемента сложной системы познавательных средств. Как заметил Ю. М. Оленов, «попытка, совсем недавно невозможная, подвергнуть анализу проблему эволюции материальных основ наследственности сейчас представляется не только целесообразной, но и необходимой»[251]. Здесь отражен существенный сдвиг в методологии генетических исследований, характеризующийся значительным повышением познавательной эффективности исторического подхода к изучению материальных основ наследственности.

Исследование нуклеиновых кислот в свете теории эволюции способствовало преодолению узких рамок морфологического подхода к построению систематики. В свою очередь использование данных молекулярной генетики для решения принципиальных вопросов филогенетики поставило проблему эволюции материальных основ наследственности. Более того, появилось новое направление молекулярной биологии — геносистематика, которая исследует количественные характеристики степени сходства организмов. Вместе с тем было бы неправильно полагать, что с возникновением геносистематики происходит автоматическая замена систематики фенотипов систематикой генотипов[252]. Здесь нет ни подмены, ни тем более противопоставления одного другому, ибо основное назначение геносистематики — дать более конкретное знание о родственных связях различных сообществ организмов, сделать более точными и глубокими представления о направлениях и темпах эволюции геномов особей. Разработка молекулярно-биологической картины эволюции является важным фактором решения филогенетических проблем[253]. Полученные в этой области данные позволяют по-новому взглянуть на молекулярно-биологические структуры, обнаружить в них в снятом виде сложные исторические отношения.

вернуться

246

American Naturalist, 1928, v. 62, N 115.

вернуться

247

См. Белозерский А. Н. Молекулярная биология — новая ступень познания природы. М., 1970; Карпинская Р. С. Методология биологического редукционизма. — Вопросы философии, 1974, № 11.

вернуться

248

См. Малиновский А. А. Роль генетических и феногенетических явлений в эволюции вида. — Известия АН СССР, серия биология, 1939, № 4

вернуться

249

См. Бреслер С Е. Современное состояние молекулярной генетики — Генетика, 1966, № 10, с 167–181.

вернуться

250

См. Ратнер В. А. Принципы организации и механизмы молекулярно-генетических процессов Новосибирск, 1972.

вернуться

251

Оленов К. М. Некоторые проблемы эволюционной генетики и дарвинизма. М.-Л., 1961, с. 89.

вернуться

252

См. Антонов Л. С. Геносистематика. Достижения, проблемы и перспективы. — Успехи современной биологии, 1974, т. 77, вып. 2.

вернуться

253

См. Гершензон С. М. Молекулярная биология и теория эволюции (методологический аспект проблемы). — Философия и теория эволюции.