Для всех эффектов, о которых здесь пойдет речь, характерно то, что они связаны с движением источника. Мы не будем больше предполагать, что смещение источника незначительно и его движение происходит с относительно малой скоростью возле фиксированной точки.
Вспомним, что, согласно основным законам электродинамики, электрическое поле на больших расстояниях от движущегося заряда дается формулой
(34.1)
Определяющей величиной здесь является вторая производная единичного вектора ед' , направленного к кажущемуся положению заряда. Единичный вектор характеризует положение заряда, конечно, не в тот же момент времени,
Ф и г. 34.1. Траектория движущегося заряда.
Истинное положение в момент времени t есть Т, положение при учете запаздывания есть А.
а то место, где находился бы заряд, если учесть конечную скорость передачи информации от заряда к наблюдателю.
Вместе с электрическим полем возникает магнитное поле, направленное всегда перпендикулярно электрическому и кажущемуся положению заряда. Оно дается формулой
(34.2)
Мы рассматривали до сих пор случай нерелятивистских скоростей, когда движением в направлении источника можно было пренебречь. Обратимся теперь к общему случаю произвольных скоростей и посмотрим, какие эффекты возникают в этих условиях. Итак, пусть движение происходит с любой скоростью, но расстояние от детектора до источника по-прежнему велико.
В гл. 28 мы уже говорили, что в производную d2eR' '/dt2 входит только изменение направления еR'. Пусть заряд находится в точке с координатами (х, у, z) и ось z лежит вдоль линии наблюдения (фиг. 34.1). В данный момент времени т координаты заряда есть x(т), y(т) и z(т)- Расстояние R с большой точностью равно .R(т) = r0 + z(т). Направление вектора еR' зависит главным образом от х и у и почти совсем не зависит от z. Поперечные компоненты единичного вектора равны x/R и y/R; дифференцируя их, мы получаем члены, содержащие R2 в знаменателе:
Таким образом, на достаточно больших расстояниях существенны только члены с производными х и у. Отсюда
(34.3)
где R0 примерно равно расстоянию до заряда q; определим его как расстояние ОР до начала координат (х, у, z). Итак, электрическое поле равно константе, умноженной на очень простую величину — производную координат х и у по t. (Математически можно назвать их поперечными компонентами вектора положения заряда r, но ясности от этого не прибавится.)
Конечно, нужно всегда помнить, что координаты берутся не в момент наблюдения, а с учетом запаздывания. В данном случае запаздывание зависит и от z (т). Чему равно время запаздывания? Обозначим время наблюдения через t (это время в точке наблюдения Р), тогда время т, которое в точке А соответствует времени t, не будет совпадать с t, а отстает от него на промежуток времени, необходимый свету, чтобы пройти все расстояние от заряда до точки наблюдения. В первом приближении время запаздывания равно R0/c, т. е. постоянной (что неинтересно), а в следующем приближении должно зависеть от z-координаты положения заряда в момент t, потому что для заряда q, сдвинутого немного назад, запаздывание увеличивается. Этим эффектом мы раньше пренебрегали, если теперь учесть его, то мы получим формулу, пригодную для любых скоростей. Нам остается выбрать определенное значение t, вычислить с его помощью т и найти х и у в момент времени t. Запаздывающие значения х и у обозначим через х' и y', вторые производные от них определяют
поле.
Итак, t определяется из уравнений
(34.4)
Эти уравнения довольно сложны, но их решение легко получить геометрическим путем. Чертеж даст вам возможность качественно почувствовать, как возникают соотношения, хотя для вывода точных результатов понадобится преодолеть еще немало математических сложностей.
§ 2. Определение «кажущегося» движения
Написанное выше уравнение можно упростить довольно интересным способом. Опустим неинтересный для нас постоянный член R0/c (это означает только, что мы изменяем начало отсчета времени t на постоянный отрезок) и запишем
(34.5)
Нам нужно найти х' и у' как функции t, а не т, и это достигается следующим образом: как подсказывает уравнение (34.5), нужно взять истинное движение заряда и добавить время т, умноженное на константу (скорость света). На фиг. 34.2 показано, что это означает. Возьмем истинную траекторию заряда (показанную слева) и представим себе, что по мере движения заряд удаляется от точки Р со скоростью с (здесь нет каких-либо релятивистских сокращений и подобных вещей; это просто математическое добавление ст). Таким путем получится новая траектория, где по оси абсцисс отложено ct, как показано на рисунке справа. (На рисунке изображена траектория довольно сложного движения в плоскости, но движение может происходить не только в плокости.)