Выбрать главу

§ 8. Аберрация

При выводе формул (34.17) и (34.18) мы взяли простой при­мер, когда k лежит в направлении движения системы коорди­нат; но мы можем обобщить теперь эти формулы на другие возможные случаи. Пусть источник посылает луч света в определенном направлении; это направление фиксируется неподвижным наблюдателем, а мы движемся, скажем, по по­верхности Земли в горизонтальном направлении (фиг. 34.12,а). В каком направлении падает луч света с нашей точки зре­ния? Можно получить ответ, записав четыре компоненты km и совершив преобразования Лоренца. Но можно воспользо­ваться и следующим рассуждением: чтобы увидеть луч, следует наш телескоп повернуть на некоторый угол (фиг. 34.12, б). Почему? Потому что свет падает сверху со скоростью с, а мы движемся горизонтально со скоростью у, и свет пройдет «пря­мо» через телескоп, если последний наклонить на некоторый угол. Легко понять, что расстояние по горизонтали равно vt, а по вертикали ct, и, обозначив угол наклона через q', мы получим tgq'=v/c. Замечательно! В самом деле, замеча­тельно, если бы не одна маленькая деталь: q' не есть тот угол, под которым надо установить телескоп по отношению к поверхности Земли, потому что наш анализ проводился с точки зре­ния неподвижного наблюдателя.

Фиг, 34.12. Удаленный источник света S.

а наблюдаемый через неподвижный телескоп; б — наблюдаемый через теле­скоп, движущийся в боковом направле­нии.

Горизонтальное расстояние, которое мы считали равным vt, неподвижный по отношению к Земле наблюдатель найдет равным совсем другой величине, так как он пользуется, с нашей точки зрения, «сжатой» линейкой. Из-за эффекта сокращения возникает совсем другое соотноше­ние:

(34.22)

что эквивалентно

(34.23)

Полезно вам самим получить это соотношение с помощью преобразования Лоренца.

Описанный выше эффект кажущегося изменения направле­ния луча называется аберрацией и обнаружен на опыте. Каза­лось бы, как он может проявиться? Ведь никто не знает, где на самом деле расположена звезда. Пусть мы действительно смотрим на звезду в неправильном, кажущемся направлении, откуда нам известно, что оно неправильное? Известно; потому, что Земля обращается вокруг Солнца. Сегодня мы устанавли­ваем телескоп под одним углом, а через шесть месяцев мы долж­ны его уже повернуть. Вот откуда мы знаем о существовании этого эффекта.

§ 9. Импульс световой волны

Займемся теперь другим вопросом. В прошлых главах мы ни разу не говорили о магнитном поле световой волны. Обычно эффекты, связанные с магнитным полем, очень малы, однако есть один интересный и важный эффект, возникающий под влиянием магнитного поля. Пусть имеется луч света, посылае­мый каким-то источником, который действует на заряд и застав­ляет его колебаться вверх и вниз. Предположим, что электри­ческое поле направлено вдоль оси х; тогда колебания заряда будут происходить тоже вдоль оси х: положение заряда дается значением х, а скорость заряда есть v (фиг. 34.13).

Магнитное поле направлено перпендикулярно электри­ческому. Электрическое поле, воздействуя на заряд, заставляет его раскачиваться вверх и вниз, а как действует магнитное поле? Магнитное поле действует только на движущийся заряд (пусть это будет, например, электрон); но электрон действитель­но движется, ведь он разгоняется электрическим полем, следо­вательно, оба поля действуют совместно. Двигаясь вверх и вниз с некоторой скоростью, электрон испытывает действие силы, равной по величине произведению Bvq, а каково направление

Фиг. 34.13. Движущийся под дей­ствием электрического поля заряд, на который со стороны магнитно­го поля действует сила, направлен­ная по световому лучу.

этой силы? Направление силы совпадает с направлением распрост­ранения, света. Следовательно, падающий на заряд луч света заставляет его колебаться и, кроме того, тянет его с некоторой силой в направлении движения световой волны. Это явление носит название давления электромагнитных волн, или светового давления.

Определим величину светового давления. Она, очевидно, равна F = qvB или, поскольку заряд и поле осциллируют, равна среднему по времени от F, т. е. <F>. Согласно (34.2), на­пряженность магнитного поля равна напряженности электри­ческого поля, деленной на с, так что мы должны найти среднее от произведения электрического поля, скорости и заряда, деленного на с: <F> = q<vE>/c. С другой стороны, произве­дение заряда q на поле Е есть сила, действующая на заряд со стороны электрического поля, а произведение силы на ско­рость есть работа в единицу времени dW/dt, совершаемая над зарядом!