Выбрать главу

Фиг. 36.10. Глаз осьминога.

Какой был бы смысл самцам так блистательно ярко наряжаться, если бы самки не могли это видеть! Иначе говоря, привлекающее оперение, которым обладают птицы, и есть результат того, что самки способны различать цвета. Так что в следующий раз, когда вы увидите павлина и будете удивляться этой сверкающей выставке ярких красок, восхищаться утонченно подобранными цветами и замирать перед удивительным чувством эстетики птицы, не забудьте, что ваш восторг относится собственно к самке павлина, к ее наблюдательности и тонкому вкусу: только это ведь и по­родило столь удивительное зрелище!

Большинство беспозвоночных имеют либо недоразвитые, либо сложные глаза, а глаза всех позвоночных животных похожи на глаз человека. Однако есть одно исключение. Рассматривая высшие формы животных, мы обычно восклицаем: «Ну ко­нечно, так и есть!», но если встать на менее предвзятую точку зрения и ограничиться только беспозвоночными, чтобы исклю­чить нас самих, и спросить зоологов, какое из беспозвоночных животных они считают наиболее развитым, то большинство из них в один голос ответят — осьминог! Весьма интересно, что, помимо развитого мозга, его реакций и прочего, которые слиш­ком хороши для беспозвоночного, осьминог имеет высокораз­витый глаз, совершенно непохожий на глаза кого-либо другого. Это не сложный глаз и не светочувствительное пятно, в нем есть и роговица, и веко, есть и радужка, и две полости, запол­ненные жидкостью, и хрусталик, и сетчатка (фиг. 36.10). В точности то же, что и у позвоночных! Это замечательный при­мер совпадения в эволюции, когда природа дважды пришла к одному и тому же решению проблемы, но с одним неболь­шим улучшением. Сетчатка у осьминога, как оказалось, пред­ставляет собой тоже часть мозга, и образовалась она при эмбрио­нальном развитии, как у позвоночных животных, но имеется одно очень интересное и поразительное отличие: чувствительные к свету клетки расположены не позади слоев других клеток, как у нас, а непосредственно на внутренней поверхности глазного яблока, а клетки, занимающиеся вычислением,— по­зади них. Теперь мы по крайней мере видим, что в расположении клеток в нашем глазе глубокого смысла нет. В другой раз природе пришлось исправить свою ошибку! Самыми боль­шими глазами наделен громадный спрут: диаметр их 38 см!

§ 6. Нервные механизмы зрения

Одной из основных тем этой главы является взаимосвязь и взаимоинформация отдельных частей глаза. Давайте рассмотрим сложный глаз краба-мечехвоста, над которым было проделано довольно много опытов.

Фиг. 36.11. Сложный глаз краба-мечехвоста, а — общий вид; б — в разрезе.

Прежде всего нужно понять, какого сорта информация может передаваться по нервам. По нерву передается нечто вроде возмущения электрической природы, которое может быть легко зарегистрировано. Это некое волно­образное возмущение, которое бежит по нерву и вызывает на другом его конце какой-то эффект. Информацию переносит длинный отросток нервной клетки, называемый аксоном, и ес­ли один конец аксона возбужден, то по нему бежит «импульс». Далее, если по нерву уже проходит один импульс, то за ним не может немедленно последовать второй. Все импуль­сы имеют одну и ту же величину, так что, когда нерв сильно возбужден, это вовсе не означает, что по нему бежит больший импульс, а просто увеличивается, число импульсов в 1 сек. Ве­личина же импульса определяется нервным волокном. Это важно усвоить, чтобы понять, что произойдет дальше.

На фиг. 36.11,а показан сложный глаз краба-мечехвоста; в нем всего лишь около тысячи омматидиев. Фиг. 36.11, б представля­ет собой поперечный разрез этой системы. Видны отдельные омматидии и нервные волокна, соединяющие их с мозгом. Но об­ратите внимание, что даже у этого краба имеются внутренние связи. Они, конечно, гораздо менее сложные, чем в глазе человека, но именно это-то и дает нам возможность изучить подобные связи на простом примере.

Давайте рассмотрим такой опыт: наложим на зрительный нерв нашего краба небольшие электроды и осветим только один омматидий; это легко можно сделать с помощью линз. Если мы в какой-то момент времени t0 включим свет и будем измерять возникающие электрические импульсы, то увидим, что после небольшой задержки последует быстрая серия разрядов, часто­та которых постепенно будет уменьшаться, пока не достигнет какой-то равномерности (фиг. 36.12,а). После выключения света разряды прекращаются. Интересно, что если усилитель остается связанным с тем же нервом, а мы направим свет на другой ом­матидий, то ничего не произойдет, сигналов не будет.