Выбрать главу

(38.3)

Мы не можем приготовить систему, в которой положение час­тицы по вертикали было бы известно, и в то же время предска­зывать с определенностью, превышающей h/Dy, насколько ее движение отклонится от вертикали. Неопределенность в вер­тикальном импульсе всегда больше h/Dy, если Dy — неопре­деленность, с какой мы знаем положение частицы.

Некоторые люди утверждают, что в квантовой механике все неправильно. Когда, говорят они, частица приближалась сле­ва, ее вертикальный импульс был равен нулю. А когда она прошла через щель, стало известно ее положение. И то, и дру­гое может быть определено с любой точностью.

Совершенно верно. Мы можем зарегистрировать частицу и определить, каково ее положение и каким должен был быть ее импульс, чтобы она попала туда, куда она попала. Это все верно. Но соотношение неопределенностей (38.3) ничего общего с этим не имеет. Уравнение (38.3) относится к возмож­ности предсказания, а не к замечаниям о том, что произошло в прошлом. Какая польза в том, что мы скажем: «Я знал, каков был импульс до прохода частицы сквозь щель, а теперь узнал к тому же и координату»? Ведь теперь-то знание об импульсе частицы уже утеряно. Раз она прошла сквозь щель, то мы уже не можем больше предсказывать ее вертикальный импульс. Речь идет о теории, способной к предсказаниям, а не об изме­рениях после того, как все завершилось. Мы и обсуждаем воп­рос о том, что можно предвидеть.

Попробуем теперь по-иному подойти к этим вещам. Приведем другой пример того же явления, на этот раз с более подробными количественными оценками. Прежде мы измеряли импульс классическим способом: мы рассматривали направление, скорость, углы, и тому подобное; в этом заключался способ получения импульса путем классического анализа. Но раз импульс связан с волновым числом, то в природе существует и другой, совершенно иной путь измерения импульса частиц (все равно, фотона или любой другой), не имеющий классиче­ского аналога. В нем используется уравнение (38.2) и просто измеряется длина волны. Давайте попробуем таким способом измерить импульс.

Пусть имеется решетка со множеством линий (фиг. 38.3), на которую направлен пучок частиц. Мы неоднократно рассматривали эту задачу: когда у частиц есть определенный импульс, то вследствие интерференции в некотором направле­нии возникает очень резкий максимум. Мы также говорили о том, насколько точно можно определить этот импульс, т. е. какова разрешающая сила решетки. Мы не будем заново это все выводить, а сошлемся на гл. 30; там мы выяснили, что относительная неопределенность в длине волны, связанная с данной решеткой, равна 1/Nm, где N — количество линий решетки, а т — порядок дифракционного максимума. Иначе говоря,

(38.4)

Перепишем эту формулу в виде

(38.5)

где расстояние L показано на фиг. 38.3. Это — разность двух расстояний: расстояния, которое должна пройти волна (или частица), отразившись от нижней части решетки, и расстояния, которое нужно пройти, отразившись от верха решетки.

Другими словами, волны, образующие дифракционный мак­симум,— это волны, приходящие от разных частей решетки. Первыми прибывают волны, вышедшие снизу — это начало цуга волн, а потом следуют дальнейшие части цуга, от средних частей решетки, пока не придут волны от верха: точка цуга, уда­ленная от его начала на расстояние L. Значит, чтобы получить в спектре резкую линию, отвечающую определенному импуль­су [с неопределенностью, даваемой формулой (38.4)], для это­го нужен цуг волн длиной L. Если цуг чересчур короток (ко­роче L), то не вся решетка будет действовать. Волны, образую­щие спектр, будут отражаться при этом только от небольшого куска решетки, и решетка не будет хорошо работать — полу­чится сильное размытие по углу. Чтобы его сузить, надо исполь­зовать всю ширину решетки так, чтобы хотя бы на одно мгнове­ние весь цуг волн улегся одновременно на решетке и рассеялся ото всех ее частей. Потому-то длина цуга должна быть равна L; тогда только неопределенность в длине волны окажется меньше, чем указано формулой (38.5). Заметим, что

(38.6)

поэтому

(38.7)

где L — длина цуга волн.

Это означает, что когда цуг волн короче L, то неопределен­ность в волновом числе превосходит 2p/L. Иначе говоря, не­определенность в волновом числе, умноженная на длину вол­нового цуга (назовем ее на минутку Dx), больше 2p. Мы назвали ее Dx потому, что это как раз неопределенность в по­ложении частицы. Если цуг волн тянется только на конечном промежутке, то лишь там мы и можем обнаружить частицу с неопределенностью Dx;. Это свойство волн (тот факт, что про­изведение длины цуга волн на неопределенность в волновом числе, связанном с этим цугом, не меньше 2p) опять-таки хо­рошо знакомо всем, кто занимался волнами. И никакого отно­шения к волновой механике оно не имеет. Просто нельзя очень точно подсчитать число волн в конечной их веренице.