Объяснить это можно и по-другому. Пусть длина цуга волн L. Так как на концах цуга волны спадают (как на фиг. 38.1), то количество волн на длине L известно с точностью порядка ± 1. Но число волн на длине L равно kL/2p. Значит, неопределенность в k равна 2p/L . Опять получилась формула (38.7) как простое свойство всяких волн. Это остается верным всегда: и для волн в пространстве, когда k есть количество радиан на 1 см, a L — длина цуга, и для волн во времени, когда w есть число колебаний в 1 сек, а Т — «длина» во времени того же цуга. Иначе говоря, если цуг волн длится только конечное время Т, то неопределенность в частоте дается формулой
(38.8)
Мы все время старались подчеркнуть, что это свойство самих волн, что все это хорошо известно, например в теории звука. А квантовомеханические применения этих свойств опираются на толкование волнового числа как меры импульса частицы по правилу р=hk, так что (38.7) уже утверждает, что Dp»h/Dx. Это устанавливает предел классическому представлению об импульсе. (Естественно, оно и должно быть как-то подвергнуто ограничению, если мы собираемся изображать частицы как волны!) И очень хорошо, что мы нашли правило, которое каким-то образом берется указать, где нарушаются классические представления.
§ 3. Дифракция на кристалле
Теперь рассмотрим отражение волн вещества от кристалла. Кристалл — это твердое тело, состоящее из множества одинаковых атомов, расположенных стройными рядами. Как можно расположить этот строй атомов, чтобы, отражая в данном направлении данный пучок света (рентгеновских лучей), электронов, нейтронов, чего угодно, получить сильный максимум? Чтобы испытать сильное отражение, лучи, рассеянные от всех атомов, должны быть в фазе друг с другом. Не может быть так, чтобы точно половина волн была в фазе, а половина — в противофазе, тогда все волны исчезнут. Нужно, стало быть, найти поверхности постоянной фазы; это, как мы уже объясняли раньше, плоскости, образующие равный угол с начальным и конечным направлениями (фиг. 38.4).
Если мы рассмотрим две параллельные плоскости, как показано на фиг. 38.4, то волны, рассеянные на них, окажутся в фазе только тогда, когда разность расстояний, пройденных фронтом волны, будет равна целому числу длин волн. Эта разность, как легко видеть, равна 2dsinq, где d — расстояние между плоскостями. Итак, условие когерентного отражения имеет вид
(n=1, 2, ...). (38.9)
Если, скажем, кристалл таков, что атомы в нем укладываются на плоскостях, удовлетворяющих условию (38.9) с n=1, то будет наблюдаться сильное отражение. Если, с другой стороны, существуют другие атомы той же природы (и расположенные с той же плотностью) как раз посередине между слоями, то на этих промежуточных плоскостях произойдет рассеяние равной силы; оно интерферирует с первым и погасит его. Поэтому d в выражении (38.9) должно означать расстояние между примыкающими плоскостями; нельзя взять две плоскости, разделенные пятью слоями, и применить к ним эту формулу!
Фиг. 38.4. Рассеяние волн плоскостями кристалла.
Фиг. 38.5. Дифракция рентгеновских лучей на кристаллах каменной соли.
Интересно, что настоящие кристаллы обычно не столь просты,— это не одинаковые атомы, повторяющиеся по определенному закону. Они скорее похожи, если прибегнуть к двумерной аналогии, на обои, на которых повторяется один и тот же сложный узор. Для атомов «узор» — это некоторая их расстановка, куда может входить довольно большое число атомов; скажем, для углекислого кальция — атомов кальция, углерода и трех атомов кислорода. Важно не то, каков рисунок, а то, что он повторяется.
Этот основной рисунок называется ячейкой, а способ повторения определяет тип решетки; тип решетки можно сразу определить, взглянув на отражения и рассмотрев их симметрию. Другими словами, от типа решетки зависит, где не будет отражения (лучей от кристалла), но чтобы узнать, что стоит в каждой ячейке, надо учесть и интенсивность рассеяния по тем или иным направлениям. Направления рассеяния зависят от типа решетки, а сила рассеяния определяется тем, что находится внутри каждой ячейки; этим способом и было изучено строение кристаллов.