Выбрать главу

С тех пор как родилась квантовая механика, стали подчер­кивать и другое положение: не надо говорить о вещах, которые невозможно измерить. (Кстати, и теория относительности го­ворила об этом же.) Пока не определено, как измерять величи­ну, ей нет места в теории. А поскольку точное значение импульса локализованной (находящейся в каком-то месте) частицы не может быть определено при помощи измерения, значит, импуль­су нечего делать в теории.

Так вот, если вы думаете, что классическая теория потому и погибла, вы ошибаетесь. Было бы легкомысленно сделать такой вывод. Невозможность точного измерения координаты и одновременно импульса не означает априори, что нельзя о них говорить, а означает только, что говорить о них нет необ­ходимости. На самом деле в науках бывает иначе: идея или понятие, которые невозможно прямо связать с опытом или замерить, могут быть полезными, а могут быть бесполезными. О них можно только сказать что они не обязаны присутствовать в теории. Пусть, например, мы сравниваем классическую тео­рию мира с квантовой теорией, а из эксперимента следует, что координата и импульс могут измеряться лишь неточно. Мы спрашиваем себя, имеет ли смысл понятие точного положения частицы или точного ее импульса. Классическая теория отве­чает «да», а квантовая — «нет». Но это само по себе не означает, что классическая физика ошибается.

Когда была открыта новая, квантовая, механика, привер­женцы классической теории, т. е. все физики, кроме Гейзенберга, Шредингера и Борна, говорили: «Что же хорошего в ней, в вашей теории, раз она не может ответить на простейшие вопросы: каково точное положение частицы? Через какую щель она проскочит? и другие». Ответ Гейзенберга гласил: «Я не обя­зан отвечать на такие вопросы, ибо вы не можете их задать эк­спериментально». Иначе говоря, отвечать — означало бы делать то, что делать необязательно. Рассмотрим две теории, (А) и (Б). Теория (А) содержит в себе идею, которую нельзя прове­рить непосредственно, но которая используется в анализе; теория (Б) этой идеи не содержит. Если их предсказания рас­ходятся, то нельзя утверждать, что теория (Б) ошибочна на том основании, что она не может объяснить идею из теории (А); ведь эта идея как раз из тех вещей, которые нельзя непосред­ственно проверить.

Ну что ж! Хорошо, конечно, знать, какие из идей экспери­ментальной проверке не поддаются, но нет необходимости от­брасывать их все. Неверно же, что науку можно создавать толь­ко из тех понятий, которые прямо связаны с опытом. Ведь в самой квантовой механике есть и амплитуда волновой функции, и потенциал, и многие другие умственные построения, не под­дающиеся прямому измерению. Основа науки — в ее способ­ности предвидеть. Предвидеть — это значит сообщать, что слу­чится в опыте, который никогда прежде не ставился. Как этого можно добиться? Предполагая, что мы независимо от экспери­мента знаем, что произойдет, мы экстраполируем опыт, выво­дим его в область, в которой он не ставился. Мы расширяем свои представления до пределов, в которых они никогда не проверялись. Если этого не сделано — никакого предсказания нет. Поэтому вполне разумно было когда-то физику-классику в счастливом неведении предполагать, что понятие положения, бесспорно имеющее смысл в футболе, имеет какой-то смысл и для электрона. Это была не глупость. Это была разумная про­цедура. А теперь мы, например, говорим, что закон относитель­ности верен при любых энергиях, а ведь в один прекрасный день явится кто-нибудь и объяснит, насколько мы глупы. Мы не догадаемся, в каком месте мы совершаем «глупость», покуда не «вырастем над собой»; вся проблема сводится к тому, как и когда нам это удастся. Единственный же способ обнаружить, в чем мы ошибаемся, это понять, в чем состоят наши предсказания. Так что без умственных построений не обойтись.