С тех пор как родилась квантовая механика, стали подчеркивать и другое положение: не надо говорить о вещах, которые невозможно измерить. (Кстати, и теория относительности говорила об этом же.) Пока не определено, как измерять величину, ей нет места в теории. А поскольку точное значение импульса локализованной (находящейся в каком-то месте) частицы не может быть определено при помощи измерения, значит, импульсу нечего делать в теории.
Так вот, если вы думаете, что классическая теория потому и погибла, вы ошибаетесь. Было бы легкомысленно сделать такой вывод. Невозможность точного измерения координаты и одновременно импульса не означает априори, что нельзя о них говорить, а означает только, что говорить о них нет необходимости. На самом деле в науках бывает иначе: идея или понятие, которые невозможно прямо связать с опытом или замерить, могут быть полезными, а могут быть бесполезными. О них можно только сказать что они не обязаны присутствовать в теории. Пусть, например, мы сравниваем классическую теорию мира с квантовой теорией, а из эксперимента следует, что координата и импульс могут измеряться лишь неточно. Мы спрашиваем себя, имеет ли смысл понятие точного положения частицы или точного ее импульса. Классическая теория отвечает «да», а квантовая — «нет». Но это само по себе не означает, что классическая физика ошибается.
Когда была открыта новая, квантовая, механика, приверженцы классической теории, т. е. все физики, кроме Гейзенберга, Шредингера и Борна, говорили: «Что же хорошего в ней, в вашей теории, раз она не может ответить на простейшие вопросы: каково точное положение частицы? Через какую щель она проскочит? и другие». Ответ Гейзенберга гласил: «Я не обязан отвечать на такие вопросы, ибо вы не можете их задать экспериментально». Иначе говоря, отвечать — означало бы делать то, что делать необязательно. Рассмотрим две теории, (А) и (Б). Теория (А) содержит в себе идею, которую нельзя проверить непосредственно, но которая используется в анализе; теория (Б) этой идеи не содержит. Если их предсказания расходятся, то нельзя утверждать, что теория (Б) ошибочна на том основании, что она не может объяснить идею из теории (А); ведь эта идея как раз из тех вещей, которые нельзя непосредственно проверить.
Ну что ж! Хорошо, конечно, знать, какие из идей экспериментальной проверке не поддаются, но нет необходимости отбрасывать их все. Неверно же, что науку можно создавать только из тех понятий, которые прямо связаны с опытом. Ведь в самой квантовой механике есть и амплитуда волновой функции, и потенциал, и многие другие умственные построения, не поддающиеся прямому измерению. Основа науки — в ее способности предвидеть. Предвидеть — это значит сообщать, что случится в опыте, который никогда прежде не ставился. Как этого можно добиться? Предполагая, что мы независимо от эксперимента знаем, что произойдет, мы экстраполируем опыт, выводим его в область, в которой он не ставился. Мы расширяем свои представления до пределов, в которых они никогда не проверялись. Если этого не сделано — никакого предсказания нет. Поэтому вполне разумно было когда-то физику-классику в счастливом неведении предполагать, что понятие положения, бесспорно имеющее смысл в футболе, имеет какой-то смысл и для электрона. Это была не глупость. Это была разумная процедура. А теперь мы, например, говорим, что закон относительности верен при любых энергиях, а ведь в один прекрасный день явится кто-нибудь и объяснит, насколько мы глупы. Мы не догадаемся, в каком месте мы совершаем «глупость», покуда не «вырастем над собой»; вся проблема сводится к тому, как и когда нам это удастся. Единственный же способ обнаружить, в чем мы ошибаемся, это понять, в чем состоят наши предсказания. Так что без умственных построений не обойтись.