Выбрать главу

Интересно вычислить, например, коэффициент отражения для воды. В этом случае n=4/3 и коэффициент отражения равен (1/7)2» 2%. При падении лучей по нормали к поверх­ности от воды отражается только 2% всей энергии.

§ 7. Аномальное преломление

Последним рассмотрим поляризационное явление, которое исторически было обнаружено самым первым,— аномальное преломление света. Моряки, побывавшие в Исландии, приво­зили в Европу кристаллы исландского шпата (СаСО3), которые обладали тем забавным свойством, что рассматриваемые сквозь них предметы как бы двоились, т. е. получалось два изображе­ния предмета. Это явление привлекло внимание Гюйгенса и сыг­рало важную роль в открытии поляризации света. Как часто бывает, найденные раньше других явления оказываются в ко­нечном счете наиболее трудными для объяснения. Обычно лишь после того, как физическая идея становится понятной в мель­чайших подробностях, можно подобрать явления, иллюстри­рующие эту идею наиболее просто и наглядно.

Аномальное преломление представляет собой частный случай уже изученного нами явления двойного лучепреломления. Аномальное преломление возникает тогда, когда Оптическая ось, т.е. большая ось асимметричных молекул, не параллельна поверхности кристалла.

На фиг. 33.7 изображены два двоякопреломляющих крис­талла и показано направление оптической оси. На верхнем рисунке падающий луч линейно поляризован в направлении, перпендикулярном оптической оси кристалла. Когда луч попадает на поверхность кри­сталла, каждая точка поверх­ности служит источником новой волны, распространяю­щейся внутрь кристалла со скоростью v (скоростью света в кристалле, соляризации которого перпендикулярна направлению оптической оси).

Фиг. 33.7. Путь обыкновенного луча (вверху) и путь необыкновен­ною луча (внизу) в ввоякопреломляющем кристалле.

Оптическая ось лежит в плоскости страницы.

Волновой фронт представляется просто огибающей всех этих маленьких сферических волн, он движется прямо сквозь кри­сталл. Такое поведение света считается обычным, а соответ­ствующий луч называется обыкновенным лучом.

На нижнем рисунке фиг. 33.7 поляризация падающего луча повернута на 90°, так что оптическая ось лежит в плоскости по­ляризации. Рассмотрим теперь маленькие волны, идущие от по­верхности кристалла; они уже не сферические, как в предыду­щем случае. Свет вдоль оптической оси движется со скоростью v, потому что поляризация перпендикулярна оптической оси, а свет, движущийся перпендикулярно оси, распространяется со скоростью v поскольку поляризация и оптическая ось парал­лельны. В двоякопреломляющем материале v<v, и на нашем рисунке выбран случай v<v. Более подробный анализ показывает, что волны у поверхности кристалла имеют форму эллипсоидов, большая ось которых совпадает с оптиче­ской осью кристалла. Огибающая этих эллиптических волн — волновой фронт — движется через кристалл, как показано на нижнем рисунке фиг. 33.7. У задней поверхности кристалла луч отклоняется на тот же угол, что и у передней, и выходит параллельно падающему лучу, сместившись на некоторое расстояние. Совершенно очевидно, что этот луч не подчиняется закону Снелла и движется довольно необычно. Поэтому его называют необык­новенным лучом.

Если на аномально преломляющий кристалл направить неполяризованный пучок света, он разделится на два луча: обыкновенный, движущийся прямо через кристалл по обычным законам, и необыкновенный, который, пройдя через кристалл, смещается относительно падающего луча. Оба прошедших через кристалл луча линейно поляризованы перпендикулярно друг другу. Этот факт легко установить опытным путем, используя поляроид для определения поляризации вышедших из кристалла лучей света. Можно также подтвердить правильность нашей интерпретации, посылая на кристалл линейно поляризованный луч. Выбирая нужную ориентацию поляризации падающего пучка, мы в одном случае увидим луч, прошедший прямо сквозь кристалл, а в другом — единственный сместившийся луч.

На фиг. 33.1 и 33.2 были представлены самые разные поля­ризации в виде суперпозиции двух основных, а именно поляри­заций по осям х и у с разными амплитудами и фазами. Вместо них можно выбрать и другие пары основных поляризаций. Один из возможных примеров представляют собой поляризации по двум перпендикулярным осям х' и y', повернутым относи­тельно х и у (можно также любую поляризацию представить как суперпозицию случаев а и д на фиг. 33.2). Оказывается, эту мысль можно еще продолжить.