10. Геттингенский математический институт
• Давид Гильберт, 1932 год
Чтобы разобраться в ней, рассмотрим весь комплекс физико-астрономических знаний. В современной науке мы отмечаем одну точку зрения, далеко выходящую за рамки старых постановок вопроса и цели нашей науки. Заключается она в том, что современная наука учит не только определять в смысле классической механики по данным существующего ныне настоящего будущие движения и ожидаемые явления, но и подсказывает, что реально существующие ныне состояния материи на Земле и во Вселенной не случайны или произвольны, а следуют из физических законов.
Важнейшим тому примером служат модель атома Бора, структура мира звезд и, наконец, вся история развития жизни. Следование аксиоматическим методам должно, как нам кажется, действительно привести к системе законов природы, соответствующих в своей совокупности действительности, и необходимо лишь мышление, то есть дедукция в терминах понятий, чтобы построить всё физическое знание; и тогда был бы прав Гегель, утверждавший, что все явления природы можно вывести из понятий. Но такое заключение неверно. Действительно, как обстоит дело с происхождением мировых законов? Как мы их получаем? Откуда нам известно, что они соответствуют действительности? Ответ гласит, что обо всем этом мы знаем только из опыта.
В отличие от Гегеля мы знаем, что законы окружающего мира не могут быть получены никаким другим способом, кроме как из опыта. В построении системы физических понятий могут принимать участие и различные чисто умозрительные точки зрения, но о том, соответствуют ли Друг другу установленные законы и построенная из них логическая система понятий, в состоянии судить только опыт. Иногда идея впервые возникает в области чистого мышления, как это было, например, с идеей атомистики Демокрита, тогда как существование атомов было доказано экспериментальной физикой лишь через две тысячи лет. Иногда опыт опережает, и под его влиянием разум вырабатывает умозрительную точку зрения. Так под сильным воздействием эксперимента Майкельсона было устранено глубоко укоренившееся представление об абсолютном времени, и Эйнштейн смог сформулировать идеи специальной теории относительности.
Тот же, кто вопреки этому отрицает, что законы окружающего нас мира происходят из опыта, должен утверждать, что помимо дедукции и опыта существует некий третий' источник познания.
В действительности философы утверждали (классическим представителем этих взглядов был Кант), что помимо логики и опыта мы априори обладаем еще некоторым знанием о действительности. При этом априорность выступает не больше и ire меньше как основополагающая установка или как выражение некоторых необходимых предпосылок мышления и опыта. Но границу между тем, чем, с одной стороны, мы обладаем априори, а с другой стороны, тем, для чего необходим опыт, мы должны проводить не так, как это делал Кант; Кант сильно переоценивал роль априорного и объем этого понятия.
Во времена Канта можно было думать, что существовавшие тогда представления о пространстве и времени обладают такой же степенью общности и так же непосредственно связаны с действительностью, как, например, представления о числе, упорядоченности и величине, которые мы постоянно и привычно используем в математических и физических теориях. При таком подходе теория пространства и времени, в частности геометрия, должна быть чем-то таким, что так же, как и арифметика, предшествует всему естествознанию. Но от точки зрения Канта отказались еще до того, как этого потребовало развитие физики, в частности Риман и Гельмгольц, причем с полным основанием, ибо геометрия есть не что иное, как та самая часть общей физической системы понятий, которая отображает возможные взаимосвязи между положениями твердых тел в мире реальных вещей. Разумеется, то, что вообще существуют подвижные твердые тела и каковы взаимосвязи между положениями тел,— дело опыта. Теорема о том, что сумма углов в треугольнике равна двум прямым углам, также может быть установлена или опровергнута с помощью опыта, о чем знал еще Гаусс. Например, если бы было доказано, что все факты, выражаемые теоремами о конгруэнтности, соответствуют опыту, а сумма углов в некотором треугольнике, построенном из твердых тел, оказалась меньше двух прямых углов, то никто не стал бы утверждать, что аксиома о параллельных должна выполняться в пространстве реальных тел.
Принимая априорную точку зрения, необходимо соблюдать величайшую осторожность; ведь многое из того, что когда-то было принято считать априорным знанием, ныне признано совершенно неприемлемым. Наиболее яркий тому пример — представление об абсолютной синхронности. Абсолютная синхронность не существует, как ни привыкли мы к этому представлению с детства, поскольку в повседневной жизни речь идет лишь о небольших расстояниях и медленных движениях. Если было бы иначе, то никому не пришло бы в голову вводить абсолютное время. Но даже такие глубокие мыслители, как Ньютон и Кант, неоднократно высказывали сомнение в абсолютном времени. Осторожный Ньютон сформулировал требование абсолютности времени предельно четко: абсолютное истинное время течет само по себе и в силу своей природы равномерно и безотносительно к какому-либо телу. Тем самым Ньютон честно отрезал все пути к отступлению и компромиссу, а Кант, критически мыслящий философ, оказался совсем не критичным, поскольку без каких-либо оговорок принял точку зрения Ньютона. И только Эйнштейн решительно освободил нас от предрассудка абсолютного времени — и это навсегда останется одним из величайших достижений человеческого духа. Теория гравитации Эйнштейна показала со всей очевидностью, что геометрия есть не что иное, как ветвь физики; геометрические истины во всех отношениях устанавливаются так же, как физические истины, и ничем не отличаются от последних. Например, теорема Пифагора и закон всемирного тяготения Ньютона взаимосвязаны, поскольку они оба подчиняются одному и тому же фундаментальному физическому понятию — потенциалу. Но для каждого, кто знаком с теорией гравитации Эйнштейна, не подлежит сомнению, что оба эти закона, столь различные внешне и считавшиеся ранее столь далекими, один из которых стал известен еще в древности и был одной из первых теорем, изучаемых в школе, а другой описывает взаимодействие масс, не только однотипны по своей природе, но и являются лишь частью одного и того же общего закона.
Вряд ли можно привести более поразительный пример принципиальной однотипности геометрических и физических факторов. Однако при обычном логическом построении и в силу повседневного опыта, приобретаемого с детства, геометрические и кинематические теоремы предшествуют теоремам динамики, и именно этим объясняется, что иногда об опыте вообще забывают. Итак, мы видим следующее: в кантовской априорной теории еще содержатся антропоморфные шлаки, от которых ее необходимо очистить, а после их удаления останется лишь та априорная установка, которая лежит в основе чисто математического знания; по существу, это и есть та финитная установка, которую я излагал в различных своих работах.
Инструментом, посредством которого осуществляется взаимосвязь теории и практики, мышления и наблюдения, служит математика; она наводит мосты и неусыпно следит за тем, чтобы те не утратили способность выдерживать нагрузку. Отсюда следует, что в основе всей нашей современной культуры, поскольку она направлена на постижение природы разумом и использование природы на благо человеку, лежит математика. Еще Галилей сказал: «Понять Природу может лишь тот, кто знает язык, на котором она говорит с нами и его письмена; язык же ее — математика, письмена — математические фигуры». Канту принадлежит следующее высказывание: «Я утверждаю, что в каждой области естествознания собственно науки столько, сколько в ней математики». И действительно, любой естественнонаучной теорией мы не овладеваем до тех пор, пока не выделим в ней математическое ядро и не раскроем его полностью. Без математики невозможны современная астрономия и физика; эти науки в своих теоретических частях растворяются в математике. Помимо них существуют также многочисленные другие приложения, снискавшие благодаря математике признание — в той мере, в какой широкая публика использует математику.