Выбрать главу

Опишем этот процесс на языке формул. Прежде всего решим, какие нам нужны переменные. В нашей задаче нам нужно знать, насколько переместился воздух, поэтому смещение воздуха в звуковой волне, несомненно, будет первой нашей переменной. Вдобавок хотелось бы знать, как меняется плотность воздуха при смещении. Давление воздуха тоже меняется, и это еще одна интересная переменная. Кроме того, воздух движется с некото­рой скоростью, и мы должны уметь определить скорость частиц воздуха. Частицы воздуха имеют еще и ускорение, но, записав все эти переменные, мы сразу же поймем, что и скорость, и ускорение будут нам известны, если известно смещение воздуха как функция времени.

Как уже говорилось, мы рассмотрим волну в одном измере­нии. Так можно поступить, если мы находимся достаточно да­леко от источника и так называемый фронт волны мало отли­чается от плоскости. На этом примере наше доказательство будет проще, поскольку можно сказать, что смещение c зависит только от х и t, а не от у и z. Поэтому поведение воздуха опи­сывается функцией c (х, t).

Насколько полно такое описание? Казалось бы, оно очень не полно, потому что нам не известны подробности движения молекул воздуха. Они движутся во всех направлениях, и этот факт не отражается функцией c(х, t). С точки зрения кинетиче­ской теории, если в одном месте наблюдается большая плот­ность молекул, а в соседнем меньшая, молекулы будут перехо­дить из области с большей плотностью в область с меньшей плотностью, так чтобы уравнять плотности. Очевидно, что при этом никаких колебаний не происходит и звук не возникает. Для получения звуковой волны нужно, чтобы молекулы, вы­летая из области с большей плотностью и давлением, переда-пали импульс другим молекулам, находящимся в области раз­режения. Звук возникает в том случае, если размеры области изменения плотности и давления намного больше расстояния, проходимого молекулами до соударения с другими молекулами. Это расстояние есть длина свободного пробега, и оно должно быть много меньше расстояния между гребнями и впадинами давления. В противном случае молекулы перейдут из гребня во впадину, и волна моментально выровняется.

Мы, естественно, хотим описать поведение газа в масштабе, большем, чем длина свободного пробега, так что свойства газа не будут определяться поведением отдельных молекул. Напри­мер, смещение есть смещение центра инерции небольшого объема газа, а давление или плотность относятся к этому же объему. Мы обозначим давление через Р, а плотность через r, причем обе величины будут функциями от х и t. Необходимо помнить, что наше описание приближенное и справедливо лишь, когда свойства газа не слишком быстро меняются с расстоянием.

§ 3. Волновое уравнение

Итак, физические явления, происходящие в звуковой волне, обладают следующими тремя свойствами:

I. Газ движется, и плотность его меняется. II. При изменении плотности меняется и давление. III. Неравномерное распределение давления вызывает дви­жение газа.

Рассмотрим сначала свойство П. Для любого газа, жидкости или твердого тела давление является функцией плотности. До прихода звуковой волны мы имели равновесное состояние с давлением Р0 и плотностью r. Давление Р зависит от плот­ности среды: Р=f(r), и в частности равновесное давление Р0=f(r0). Отклонения величины давления от равновесного в звуковой волне очень малы. Давление удобно измерять в барах (1 бар=105н/м2). Давление в одну стандартную атмосферу приб­лизительно равно 1 бар (1 атм=1,0133 бар). Для звука обычно используется логарифмическая шкала интенсивности, так как восприятие уха, грубо говоря, растет логарифмически. В этой децибельной шкале уровень звукового давления I связан с амплитудой звукового давления:

I=20log10(P/Pотн) дб, (47.1)

где давление отнесено к некоторому стандартному давлению Ротн=2·10-10 бар.

Звуковое давление Р=103 Ротн=2·10-7 бар соответствует довольно сильному звуку в 60 дб. Мы видим, что давление ме­няется в звуковой волне на очень малую величину по сравнению с равновесным или средним, равным 1 атм. Смещение и перепады плотности также очень малы. При взрывах, однако, изменения уже не столь малы; избыточное звуковое давление может пре­вышать 1 атм. Такие большие перепады давления приводят к новым явлениям, которые мы рассмотрим позже. В звуковых волнах уровень силы звука выше 100 дб встречается редко; уровень силы звука в 120 дб уже вызывает боль в ушах. Поэто­му, написав для звуковой волны