Выбрать главу

Фиг. 47.4. Результирующая сила в направлении оси х, возникающая за счет давления на единичную площадку, перпендикулярную к оси х, есть — (дР/дх)Dx.

Р(х, t)-P(x+Dx, t)=-(дP/дx) Dx=(дPu/дx) Dx. (47.10)

Мы учли, что Dx; мало и что только избыточное давление Ри меняется в зависимости от х. Итак, согласно свойству III мы получаем

(III) r0=д2c/дt2=-дPu/дx. (47.11)

Теперь уже уравнений достаточно, чтобы увязать все вели­чины и привести к одной переменной, скажем х. Можно выразить Рuв (47.11) с помощью (47.4):

r0д2c/дt2-cдru/дx (47.12)

а затем исключить ru с помощью (I). Тогда r0 сократится и у нас останется

д2c/дt2=xд2c/дx2. (47.13)

Обозначим с2s =x, тогда можно написать

Это и есть волновое уравнение, которое описывает распростра­нение звука в среде.

§ 4. Решения волнового уравнения

Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмуще­ние, движется с постоянной скоростью. Кроме того, нам нужно доказать, что два различных колебания могут свободно прохо­дить друг через друга, т. е. принцип суперпозиции. Мы хотим еще доказать, что звук может распространяться и вправо и влево. Все эти свойства должны содержаться в нашем одном урав­нении.

Раньше мы отмечали, что любое возмущение, имеющее вид плоской волны и движущееся с постоянной скоростью, записы­вается в виде f(x-vt). Посмотрим теперь, является ли f(x-vt) решением волнового уравнения. Вычисляя дc/дх, получаем производную функции dcldx=f'(x-vt). Дифференцируя еще раз, находим

Дифференцируя эту же функцию c по t, получаем значение — V, умноженное на производную, или дc/dt=-vf (x-vt); вторая производная по времени дает

Очевидно, что f(х-vt) удовлетворяет волновому уравнению, если v равно cs.

Таким образом, из законов механики мы получаем, что любое звуковое возмущение распространяется со скоростью csи, кроме того,

тем самым мы связали скорость звуковых волн со свойствами среды.

Легко увидеть, что звуковая волна может распространяться: и в направлении отрицательных х, т. е. звуковое возмущений вида c (х, t)=g(x+vt) также удовлетворяет волновому уравнению. Единственное отличие этой волны от той, которая распростра­нялась слева направо, заключается в знаке v, но знак д2c/dt2не зависит от выбора x+vt или х-vt, потому что в эту производ­ную входит только v2. Отсюда следует, что решение уравнения описывает волны, бегущие в любом направлении со скоростью cs.

Особый интерес представляет вопрос о суперпозиции решений. Допустим, мы нашли одно решение, скажем c1 . Это значит, что вторая производная 3d по х равна второй производной c1 по t1, умноженной на 1/с2s. И пусть есть второе решение c2, обладаю­щее тем же свойством. Сложим эти два решения, тогда полу­чается

c (x, t)= c1(x, t) + c2(x, t). (47.17)

Теперь мы хотим удостовериться, что c (х, t) тоже представ­ляет некую волну, т. е. c тоже удовлетворяет волновому уравнению. Это очень просто доказать, так как

и вдобавок

Отсюда следует, что d2c/dx2=(l/c2s2c/dt2, так что справедли­вость принципа суперпозиции проверена. Само существование принципа суперпозиции связано с тем, что волновое уравнение линейно по c.