Фиг. 49.3. Две гармоники, напоминающие при сложении бегущую волну.
На этом же рисунке показан и результат сложения, который начинает напоминать горб, пробегающий взад и вперед по струне от одного конца до другого, хотя с помощью только двух собственных гармоник нельзя построить достаточно хорошей картины такого движения; их нужно гораздо больше. Этот результат представляет на самом деле частный случай основного принципа линейных систем, который гласит:
Любое движение можно рассматривать как составленное из различных собственных гармоник, взятых с надлежащими амплитудами и фазами.
Значение этого принципа обусловлено тем фактом, что каждое собственное колебание — очень простая вещь — это просто синусоидальное движение во времени. По правде говоря, даже общее движение струны — еще не самая сложная вещь; существует движение куда более сложное, скажем такое, как вибрация крыльев самолета. Тем не менее даже у крыльев самолета можно обнаружить некие собственные кручения с определенными частотами. А если так, то полное движение можно рассматривать как суперпозицию гармонических колебаний (за исключением тех случаев, когда вибрация настолько велика, что система уже не может рассматриваться как линейная).
§ 3. Двумерные собственные колебания
Сейчас мы перейдем к рассмотрению очень интересного поведения собственных гармоник в двумерных колебаниях. До сих пор мы говорили только об одномерных колебаниях: натянутой струне или звуковых волнах в трубе. В конце концов мы должны добраться до трех измерений, но сначала давайте остановимся на более легком этапе — этапе двумерных колебаний. Возьмем для большей определенности прямоугольный резиновый барабан, перепонка которого закреплена по краям так, что на прямоугольном крае барабана она перемещаться не может. Пусть размеры прямоугольника будут
равны а и 6, как это показано на фиг. 49.4.
Фиг. 49.4. Колебание прямоугольной пластинки.
Прежде всего, каковы характеристики возможного движения? Можно начать с того же, с чего мы начали, когда рассматривали пример со струной. Если бы никакого закрепления не было вовсе, то можно было бы ожидать появления волн, бегущих в некотором направлении, например синусоидальной волны, описываемой функцией ехр(iwt) ехр[-i(kчx)+i(kyy)], направление движения которой зависит от относительной величины чисел kxи ky. А как теперь сделать узел на оси х, т. е. при y=0? Используя ту же идею, что и для одномерной струны, можно добавить волну, описываемую комплексной функцией
-exp(iwt)ехр[-i(kxx)-i(kyy)].
Суперпозиция этих волн в результате дает нулевое перемещение при y=0 независимо от того, каковы будут значения х и t. (Хотя эти функции будут определены и для отрицательных значений у там, где никакого барабана нет и колебаться нечему, но на это можно не обращать никакого внимания. Ведь нам хотелось устранить перемещение при у=0, и мы добились этого.) Вторую функцию в этом случае можно рассматривать как отраженную волну.
Однако нам нужно получить узел не только на линии y=0, но и на линии у=b. Как же это сделать? Решение такой задачи связано с некоторыми вещами, которыми мы занимались при изучении отражения света от кристалла. Волны, гасящие друг друга при y=0, могут сделать то же самое и при у=b, только когда 2b sin 0 равно целому числу длин волн l, (q — угол, показанный на фиг. 49.4):
ml=2bsinq, m=0, 1, 2, .... (49.7)
Точно таким же образом, т.е. сложением еще двух функций [-exp(iwt)]exp[i(kxx)+ i(kyy)] и [+exp(ict)}exp[i(kxx)-i(kyy)], каждая из которых представляет отражение другой от линии х=0, можно устроить узел и на оси у. Условие того, что линия х=а будет тоже узловой, получается так же, как и условие при у=b, т. е. 2acosq должно быть равно целому числу длин волн: