Выбрать главу

nl = 2acosq. (49.8)

Тогда окончательный результат таков: волны, «заключенные» в ящике, имеют вид стоячей волны, т. е. образуют какие-то определенные собственные гармоники.

Таким образом, если мы хотим иметь дело с собственными гармониками, то должны удовлетворить двум написанным выше условиям. Для начала давайте найдем длину волны. Ис­ключив из уравнений (49.7) и (49.8) угол q, можно выразить длину волны через a, b, n и т. Легче всего это сделать так: сначала разделить обе части уравнений соответственно на 2b и 2a, а затем возвести их в квадрат и сложить. В результате мы получим уравнение

sin2q+cos2q =1=(nl/2a)2+(ml/2b)2,

которое легко разрешить относительно class="underline"

Итак, мы определили длину волны через два целых числа, а по длине волны мы немедленно получаем частоту w, ибо, как известно, частота равна 2pc, деленной на длину волны.

Этот результат настолько важен и интересен, что необхо­димо теперь получить его строго математически без использо­вания аналогий с отражением. Давайте представим колебание в виде суперпозиции четырех волн, подобранных таким обра­зом, чтобы все четыре линии x=0, х=а, y=0 и у=b были узло­выми. Потребуем еще, чтобы все эти волны имели одинаковую частоту, т. е. чтобы результирующее движение представляло собственное колебание. Из главы об отражении света мы уже знаем, что функция exp(iwt)exp[-i(kxx)+i(kyy)] опи­сывает волну, идущую в направлении, указанном на фиг. 49.4. По-прежнему остается справедливым уравнение (49.6), т. е. k =w/c, с той разницей, что теперь

k2=k2x+k2y. (49.10)

Из рисунка ясно, что kx=kcosq, a ky=ksinq.

Таким образом, наше выражение для перемещения прямо­угольной перепонки барабана (назовем это перемещение j запишется в виде

Хотя выглядит это довольно неприглядно, сумма таких экспо­нент, в сущности, не так уж громоздка. Их можно свернуть в синусы, так что перемещение, как оказывается, приобретает вид

Другими словами, получились знакомые синусоидальные колебания, форма которых тоже синусоидальна как в направ­лении оси х, так и в направлении оси у. Граничные условия при x= 0 и y=0 удовлетворяются автоматически. Однако мы хо­тим, кроме того, чтобы j обращалось в нуль при х=а и у=b. Для этого мы должны наложить два дополнительных условия, а именно kxa и kxb должны быть равны целому числу p (эти це­лые числа могут быть разными для kxa и kyb!). Но поскольку, как мы видели, kx=kcosq и ky=ksinq, то отсюда немедленно получаются уравнения (49.7) и (49.8), а из них следует оконча­тельный результат (49.9).

Возьмем теперь для примера прямоугольник, ширина ко­торого вдвое больше высоты. Если положить а=2b и восполь­зоваться уравнениями (49.4) и (49.9), то можно вычислить ча­стоты всех гармоник

В табл. 49.1 перечислено несколько простых гармоник и ка­чественно показана их форма.

Таблица 49.1 · ПРОСТЫЕ ГАРМОНИКИ И ИХ ФОРМА

Следует отметить наиболее важную особенность этого част­ного случая — частоты не кратны ни друг другу, ни какому-то другому числу. Представление о том, что собственные частоты гармонически связаны друг с другом, в общем случае неверно. Оно неверно ни для системы размерности, большей единицы, ни даже для одномерной системы, более сложной, чем однород­ная и равномерно натянутая струна. Простейшим примером может служить подвешенная цепочка, натяжение которой вверху меньше, чем внизу. Если возбудить в такой цепочке гармонические колебания, то возникнут собственные гармо­ники с различными частотами, однако частоты не будут просто кратными какому-то числу, да и сама форма гармоник больше не будет синусоидальной.

Еще причудливей оказываются гармоники более сложных систем. Человеческий рот, например, представляет собой по­лость, расположенную над голосовыми связками. Движением языка и губ можно создать либо трубу с открытым концом, либо трубу с закрытым концом, причем диаметры и формы этой трубы будут раз личными. В общем это страшно сложный резона­тор, но тем не менее все же резонатор. При разговоре мы с помощью голосовых связок создаем какой-то тон. Тон этот довольно сложен, в него входит множество звуков, но благо­даря различным резонансным частотам полость рта еще больше модифицирует его. Певец, например, может петь различные гласные: «а», «о», «у» и еще другие с той же самой высотой, но звучат они по-разному, ибо различные гармоники по-разному резонируют в этой полости. Огромную роль резонансных ча­стот полости в образовании голосовых звуков можно проде­монстрировать на очень простом опыте. Как известно, скорость звука обратно пропорциональна квадратному корню из плот­ности, поэтому для разных газов она различна. Если вместо воздуха мы используем гелий, плотность которого меньше, то скорость звука в нем окажется больше и все резонансные ча­стоты полости будут больше. Следовательно, если бы мы могли перед тем, как начать говорить, наполнить наши легкие ге­лием, то, хотя голосовые связки по-прежнему колебались бы с той же частотой, характер нашего голоса резко изменился бы.