Выбрать главу

§ 4. Связанные маятники

Напоследок необходимо подчеркнуть, что гармоники возни­кают не только в сложных непрерывных системах, но и в очень простых механических системах. Хорошим примером этого служит рассмотренная в предыдущей главе система двух свя­занных маятников. Там мы показали, что общее движение этой системы можно рассматривать как суперпозицию двух типов гармонических движений с различными частотами, так что даже такую систему можно рассматривать с точки зрения собствен­ных гармоник. В струне возбуждается бесконечное число соб­ственных гармоник, у двумерной поверхности их тоже беско­нечно много. В каком-то смысле здесь получается даже двойная бесконечность (если бы мы только знали, как работать с бесконечностями!). Но в простом механическом устройстве, обла­дающем только двумя степенями свободы и требующем для своего описания лишь двух переменных, возбуждаются всего две гар­моники.

Попробуем найти математически эти две гармоники для слу­чая, когда длины маятников одинаковы. Пусть отклонение одного маятника будет х, а другого — y, как это показано на фиг. 49.5.

Фиг. 49.5. Два связанных маят­ника.

При отсутствии пружины сила тяжести, действующая на первый маятник, пропорциональна его отклонению. Если бы здесь не было пружины, то для одного маятника появилась бы некоторая собственная частота w0, а уравнение движения в этом случае приобрело бы вид

m(d2x/dt2)=-mw20x. (49.13)

Второй маятник при отсутствии пружины качался бы точно так же, как и первый. Однако при наличии пружины в допол­нение к восстанавливающей силе, возникающей в результате гравитации, появляется еще добавочная сила от пружины, ко­торая стремится «стянуть» маятники. Эта сила зависит от пре­вышения отклонения х над отклонением у и пропорциональна их разности, т. е. она равна некоторой постоянной, зависящей только от геометрии, умноженной на (х-у). Та же сила, но в обратном направлении действует на второй маятник. Поэтому уравнения движения, которые мы должны решить, будут сле­дующими:

Чтобы найти движение, при котором оба маятника колеблются с одинаковой частотой, мы должны определить, насколько отклоняется каждый из них. Другими словами, маятник А и маятник В будут колебаться с одинаковой частотой и с ка­кими-то амплитудами А и B, отношение которых фиксировано. Давайте проверим, насколько подходит такое решение:

x=Aeiwt, у=Веiwt. (49.15)

Если подставить его в уравнения (49.14) и собрать подобные члены, то получим

При выводе этих уравнений мы сократили общий множитель еiwtи разделили все на m.

Теперь мы видим, что получились два уравнения для, каза­лось бы, двух неизвестных. Однако на самом деле здесь не два неизвестных, ибо общие масштабы движения нельзя найти из этих уравнений. Они могут дать нам только отношение А к В, причем оба уравнения должны дать одинаковую величину. Тре­бование согласованности уравнений друг с другом накладывает требование на частоту: она должна быть какой-то очень спе­циальной.

Но найти частоту в этом частном случае довольно легко. Если перемножить оба уравнения, то мы получим