Выбрать главу

 

 

Глава 50

ГАРМОНИКИ

§ 1. Музыкальные звуки

§ 2. Ряд Фурье

§ 3. Качество и гармония

§ 4. Коэффициент Фурье

§ 5. Теорема об энергии

§ 6. Нелинейная реакция

§ 1. Музыкальные звуки

Говорят, что Пифагор первый обнаружил тот интересный факт, что одновременное зву­чание двух одинаковых струн различной длины приятнее для слуха, если длины этих струн относятся друг к другу как небольшие целые числа. Если длины струн относятся как 1:2, то это — музыкальная октава; если они относятся как 2:3, то это соответствует интервалу между нотами до и соль и называется квинтой. Эти интервалы считаются «приятно» звучащи­ми аккордами. На Пифагора произвело такое впечатление это открытие, что на его основе он создал школу «пифагорийцев», как их называли, которые мистически верили в вели­кую силу чисел. Они полагали, что нечто по­добное будет открыто и в отношении планет, или «сфер». Иногда можно услышать такое вы­ражение: «музыка сфер». Смысл его в том, что в природе предполагалось существование чис­ловой связи между орбитами планет или между другими вещами. Это считается чем-то вроде суеверия древних греков. Но далеко ли от этого ушел наш сегодняшний научный интерес к количественным соотношениям? Открытие Пифагора, помимо геометрии, было первым примером установления числовых связей в природе. Поистине должно быть было удиви­тельно вдруг неожиданно обнаружить, что в природе есть такие факты, которые описы­ваются простыми числовыми соотношениями. Обычное измерение длин позволяет предска­зать то, что, казалось бы, не имеет никакого отношения к геометрии,— создание «прият­ных» звуков. Это открытие привело к мысли, что арифметика и математический анализ, по-видимому, могут служить хорошим орудием в понимании при­роды. Результаты современной науки полностью подтверждают такую точку зрения.

Пифагор смог сделать свое открытие лишь с помощью экс­периментальных наблюдений. Однако все значение этого от­крытия, по-видимому, не было ему ясно. А случись это, и развитие физики началось бы гораздо раньше. (Впрочем, всегда легко рассуждать о том, что сделал кто-то когда-то и что на его месте следовало бы сделать!)

Можно отметить еще одну, третью сторону этого интерес­ного открытия: оно касается двух нот, которые звучат приятно для слуха. Но далеко ли ушли мы от Пифагора в понимании того, почему только некоторые звуки приятны для слуха? Общая теория эстетики, по-видимому, ненамного продвинулась со времен Пифагора. Итак, одно это открытие греков имеет три аспекта: эксперимент, математические соотношения и эстетику. Физики пока добились успеха только в первых двух. В этой главе мы расскажем о современном понимании открытия Пифагора.

Среди звуков, которые мы слышим, есть такой сорт, кото­рый называется шумом. Ему соответствуют какие-то нерегу­лярные колебания барабанной перепонки уха, вызванные не­регулярными колебаниями находящихся поблизости объектов. Если начертить диаграмму зависимости давления воздуха на барабанную перепонку (а следовательно, и перемещения ее) от времени, то график, соответствующий шуму, будет выглядеть так, как это изображено на фиг. 50.1,а.

Фиг. 50.1. Давление как функция времени.

а для шума; б — для му­зыкального звука.

(Такой шум может например, вызвать топанье ногой.) А музыкальный звук имеет другой характер. Музыка характеризуется наличием более или менее длительных тонов, или музыкальных «нот». (Кстати, музыкальные инструменты тоже умеют производить шум!)

Тон может длиться сравнительно недолго, например когда мы ударяем по клавише фортепьяно, или неопределенно дол­го, когда, скажем, флейтист берет длинную ноту.

В чем состоит особенность музыкальной ноты с точки зре­ния давления воздуха? Музыкальный звук отличается от шума тем, что график его периодичен. Форма колебаний давления воздуха со временем пусть даже какая-то неправильная, но она должна повторяться снова и снова. Пример зависимости дав­ления от времени для музыкального звука показан на при­веденной выше фиг. 50.1.б.