Выбрать главу

Фурье открыл, что на самом деле сделать это не очень труд­но. Член а0уж наверняка нетрудно найти. Мы говорили, что он равен среднему значению f(f) на протяжении одного периода (от t=0 до t=T). Легко увидеть, что это действительно так. Среднее значение синуса или косинуса на протяжении одного периода равно нулю. На протяжении двух, или трех, или дру­гого целого числа периодов оно тоже равно нулю. Таким обра­зом, среднее значение всех членов с правой стороны (50.2), за исключением только а0, равно нулю. (Напомним, что мы должны выбрать w=2p/T.)

Далее, поскольку среднее значение суммы равно сумме сред­них, то среднее значение функции f(t) равно просто среднему от а0. Но ведь а0 — просто постоянная, и ее среднее значение равно ей самой. Вспоминая определение среднего, мы полу­чаем

Найти остальные коэффициенты ненамного труднее. Чтобы сде­лать это, используем один фокус, открытый самим Фурье. Предположим, что мы умножили обе стороны уравнения (50.2) на какую-то гармоническую функцию, скажем на cos7wt. При этом получается

А теперь усредним обе стороны равенства. Среднее от члена a0cos7wt по периоду Т пропорционально среднему от косинуса по семи его периодам. Но последнее просто равно нулю. Среднее почти всех остальных членов тоже будет равно нулю. Действи­тельно, давайте рассмотрим член с а1. Мы знаем, что в общем случае

cosAcosВ=1/2cos+B)+1/2cos (А-В), (50.5)

так что член с а1равен

a1(cos8wt+cos6wt). (50.6)

Таким образом получаются два косинуса: один с восемью пол­ными периодами, а другой с шестью. Оба они равны нулю. Поэтому среднее значение этого члена тоже равно нулю.

Для члена с а2 мы получаем cos9wt и cos5wt, каждый из которых при усреднении превратится в нуль. Для члена с а9 получится соз16wt и cos(-2wt). Но cos(-2wt) — это то же са­мое, что cos2wt, так что опять оба члена дадут при усреднении нуль. Ясно, что все слагаемые с косинусами, за исключением одного, дадут при усреднении нуль. Этим единственным сла­гаемым будет член с а7. Для него же мы получим

1/2a7(cos14wt+cos0). (50.7)

Косинус нуля равен единице, а среднее от него, разумеется, тоже равно единице. Итак, мы получили, что среднее от всех членов с косинусами уравнения (50.4) равно 1/2а7.

Еще легче расправиться с синусами. Когда мы умножаем их на косинус типа cos nwt, то таким же методом можно показать, что все они при усреднении обращаются в нуль.

Мы видим, что способ, придуманный Фурье, действует как своеобразное сито. Когда мы умножаем на cos7wt и усредняем, то все члены, кроме а7, отсеиваются и в результате остается

или

Пусть читатель сам докажет, что коэффициенты b7, например, находятся с помощью умножения (50.2) на sin 7wt и усреднения обеих частей. Результат таков:

Но то, что верно для 7, очевидно, верно и для любого дру­гого целого числа. Теперь мы запишем результат нашего дока­зательства в следующей, более элегантной математической форме. Если m и n — целые отличные от нуля числа и если w=2p/T, то

В предыдущих главах для описания простого гармониче­ского движения было удобно пользоваться экспоненциальной функцией. Вместо coswt мы использовали Re ехр(iwt) —дей­ствительную часть экспоненциальной функции. В этой главе мы использовали синус и косинус, потому что с ними, пожа­луй, немного проще проводить доказательства. Однако наш окончательный результат, уравнение (50.13), можно записать в более компактной форме:

где аnкомплексное число аn-ibn(с b0=0). Если мы всюду будем пользоваться одним и тем же обозначением, то должны также написать