Выбрать главу

Итак, теперь мы умеем раскладывать периодическую волну на ее гармонические компоненты. Эта процедура называется разложением в ряд Фурье, а отдельные члены называются фурье-компонентами. Однако до сих пор мы не показали, что, определив все фурье-компоненты и затем сложив их, мы дейст­вительно придем назад к нашей функции f(t). Математики до­казали, что для широкого класса функций (в сущности, для всех функций, интересных физикам), которые можно проин­тегрировать, мы снова получаем f(t). Но есть одно небольшое исключение. Если функция f(t) разрывна, т. е. если она неожи­данно прыгает от одного значения к другому, сумма Фурье такой функции даст в точке разрыва значение, лежащее посре­дине между верхним и нижним значениями. Таким образом, если у нас есть странная функция f(t)=0 для 0≤t<t0и f(t)=1 для t0≤t≤T, то ее сумма Фурье всюду даст нам правильную величину, за исключением точки t0, где вместо единицы полу­чится 1/2. Во всяком случае, физически даже нельзя требовать, чтобы функция была всюду нулем вплоть до точки t0, а в самой точке t0вдруг стала равной единице. Может быть, стоило бы спе­циально для физиков издать такой «указ», что любая разрывная функция (которая может быть только упрощением настоящей физической функции) в точке разрыва должна принимать сред­нее значение. Тогда любая такая функция, с любым конечным числом «ступенек», как и все другие интересные для физики функции, будет правильно описываться рядом Фурье.

В качестве упражнения предлагаем читателю найти ряд Фурье для функции, показанной на фиг. 50.3.

Фиг. 50.3. Ступенчатая фун­кция. f(t)=+1 для 0<t<T/2 ,

f(t)=-1 для T/2<t<T.

Поскольку эту функцию нельзя записать в точной алгебраической форме, то брать интеграл от 0 до Т обычным способом невозможно. Однако если разделить его на две части: по интервалу от 0 до T/2 [на котором функция f(t)=1] и по интервалу от T/2 до T [на ко­тором f(t) -1], то интеграл легко берется. В результате должно получиться

где w=2p/T. Таким образом, оказывается, что для нашей сту­пенчатой волны (со специально выбранной фазой) будут только нечетные гармоники, причем их амплитуды обратно пропор­циональны частотам.

Давайте проверим, что для некоторого значения t результат (50.19) действительно дает снова f(t). Возьмем f = T/4или wt=p/2. Тогда

Сумма этого ряда равна p/4, а, стало быть, f(T)=1 .

§ 5. Теорема об энергии

Энергия волны пропорциональна квадрату ее амплитуды.

Для сложной волны энергия за один период пропорциональна m

Эту энергию можно связать с коэффициентами Фурье.

Напишем

После раскрытия квадрата в правой части мы получим сумму всевозможных перекрестных членов типа a5cos5wtb7cos7wt. Однако выше мы уже показали [уравнения (50.11) и (50.12)], что интегралы от всех таких членов по одному периоду равны нулю, так что останутся только квадратные члены, подобные a25cos25wt. Интеграл от любого квадрата косинуса или синуса по одному периоду равен Т/2, так что получаем

Это уравнение называют «теоремой об энергии», которая гово­рит, что полная энергия волны равна просто сумме энергий всех ее фурье-компонент. Применяя, например, эту теорему к ряду (50.19), мы получаем

поскольку [f(t)]2=1. Таким образом мы узнали, что сумма квад­ратов обратных нечетных чисел равна p2/8. Точно так же, выпи­сав сначала ряд Фурье для функции и используя затем теорему об энергии, можно доказать результат, понадобившийся нам в гл. 45, т. е. что 1+1/24+1/34+... равно p4/90.

§ 6. Нелинейная реакция

Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важ­ность, но это уже относится к области нелинейных эффектов. Во всех рассмотренных нами до сих пор системах все предпола­галось линейным; реакция на действие силы, например пере­мещение или ускорение, всегда была пропорциональна силам. Токи в электрической цепи были тоже пропорциональны на­пряжениям и т. д. Теперь мы хотим рассмотреть случаи, когда строгая пропорциональность отсутствует. Представим на ми­нуту устройство, реакция которого xвыход=xвых в момент t опре­деляется внешним воздействием xвход = xвх в тот же момент t.