Например, xвх может быть силой, а хвых— перемещением, или хвх— ток, а xвых— напряжение. Если бы устройство было линейное, то мы бы получили
xвых(t)=Kxвх(t), (50.24)
где К — постоянная, не зависящая ни от t, ни от хек. Предположим, однако, что устройство только приблизительно линейное, т. е. на самом деле нужно писать
xвых(t)=K[xвх(t)+ex2вх(t)]. (50.25)
где e мало по сравнению с единицей. Такие линейная и нелинейная реакции показаны на фиг. 50.4.
Фиг. 50.4. Реакции, а — линейная,
xвых=kxвх; б—нелинейная, xвых =k(хвх+ex2вх).
Нелинейная реакция приводит к нескольким важным практическим следствиям. Некоторые из них мы сейчас обсудим. Посмотрим сначала, что получается, если пропустить через подобное устройство «чистый» тон. Пусть xвх=coswt. Если мы построим график зависимости xвых от времени, то получим сплошную кривую, показанную на фиг. 50.5.
Фиг. 50.5. Реакция нелинейного устройства на входящий сигнал coswt.
Для сравнения показана линейная реакция.
Для сравнения там же проведена пунктирная кривая, представляющая реакцию линейной системы. Мы видим, что на выходе получается уже не косинусообразная функция. Она более острая в вершине и более плоская в основании. Поэтому мы говорим, что выходной сигнал искажен. Однако, как известно, такая волна не будет уже чистым тоном, а приобретает какие-то высшие гармоники Можно найти эти гармоники. Подставляя xвх=coswt в уравнение (50.25), получаем
хвых=К(coswt+ecos2wt). (50.26) Используя равенство cos2q = 1/2(l-cos2q), находим
xвых=K(coswt+ e/2-e/2cos2wt) . (50.27)
Таким образом, в выходящей волне присутствует не только основная компонента, которая была во входящей волне, но и некоторая доля второй гармоники. Кроме того, в выходящей волне появился постоянный член К(e/2), который соответствует сдвигу среднего значения, показанному на фиг. 50.5. Эффект возникновения сдвига среднего значения называется выпрямлением. Нелинейное устройство будет выпрямлять и давать на выходе высшие гармоники. Хотя предположенная нами нелинейность только добавляет вторую гармонику, нелинейность высшего
порядка, например х3вхили x4вх, даст уже более высокие гармоники.
Другим результатом нелинейной реакции является модуляция. Если входящая функция содержит два (или больше) чистых тона, то на выходе получатся не только их гармоники, но и другие частотные компоненты. Пусть хвх=Аcosw1t+Bcosw2t, причем w1 и w2 не находятся в рациональном отношении друг к другу. Тогда в дополнение к линейному члену (равному произведению К на входящую волну) на выходе мы получим
xвых=Ke(Acosw1t+Bcosw2t)2, (50.28)
хвых=Кe(А2cos2w1t+В2cos2w2t+2AB cosw1tcosw2t). (50.29)
Первые два члена в скобках уравнения (50.29) — старые знакомые. Они дают нулевую и вторую гармоники, но последний член — это уже нечто новое.
На этот новый «перекрестный член» АВcosw1tcosw2t можно смотреть с двух сторон. Во-первых, если две частоты сильно отличаются друг от друга (например, w1 много больше w2), то мы можем считать, что перекрестный член представляет косинусообразные колебания с переменной амплитудой. Я имею в виду такую запись: