Выбрать главу

АВ cosw1tcosw2t=C(t)cosw1t, (50.30)

где

С(t)=АВсоsw2t. (50.31)

Мы говорим, что амплитуда колебаний cosw1 модулируется с частотой w2.

Во-вторых, этот же перекрестный член можно рассматри­вать с другой точки зрения:

ABcosw1tcosw2t= AB/2[cos (w1-w2) t+cos(w1 -+w2) t], (50.32)

т. е. можно сказать, что возникают две новые компоненты, одна из которых равна сумме частот w1+w2, а другая — разности

Таким образом, существуют два различных, но эквивалент­ных способа толкования одного и того же явления. В предель­ном случае w1>>w2 можно связать эти две различные точки зре­ния, заметив, что поскольку (w1+w2) и (w1-w2) близки друг к другу, то между ними должны наблюдаться биения. Но эти биения дают в результате модуляцию амплитуды колебаний со средней частотой w1, половинкой разности частот 2w2. Теперь вы видите, почему эти два описания эквивалентны.

Итак, мы обнаружили, что нелинейная реакция дает не­сколько эффектов: выпрямление, возникновение гармоник и модуляцию, т. е. возникновение компонент с суммой и разно­стью частот.

Обратите внимание, что все эти эффекты пропорциональны не только коэффициенту нелинейности e, но и произведению амплитуд: либо A2, либо В2, либо АВ. Поэтому мы ожидаем, что они будут более важны для сильных сигналов, чем для слабых.

Описанные нами эффекты находят множество практических приложений. Во-первых, что касается звука, то, как полагают, наше ухо — нелинейный аппарат. Такое представление воз­никло из того факта, что, даже когда звук содержит только чистые тоны, при большой громкости возникает ощущение, что мы слышим высшие гармоники, а также сумму и разность час­тот.

Аппараты, используемые обычно в звуковоспроизводящих устройствах,— усилители, громкоговорители и т. д.— всегда имеют какие-то нелинейности. Они искажают звук, порождая гармоники, которых вначале не было. Эти новые гармоники воспринимаются ухом и, несомненно, нежелательны. Именно по этой причине высокочастотная аппаратура должна быть как можно «более линейной». (Почему нелинейность нашего собст­венного уха не «неприятна» и откуда нам знать, что нелинейность «сидит» в громкоговорителе, а не в нашем ухе,— не ясно!)

Однако в некоторых случаях нелинейность совершенно необходима, и в некоторых частях радиопередающих и прини­мающих устройств она намеренно делается побольше. При ра­диопередачах с помощью амплитудной модуляции сигналы от «голоса» (частоты порядка нескольких килогерц) комбинируются с «несущим сигналом» (с частотой порядка нескольких ме­гагерц) в нелинейной цепи, которая называется модулятором. При этом получаются модулированные колебания, которые за­тем излучаются в эфир. В приемнике сигнал снова попадает в нелинейный контур, который складывает и вычитает частоты модулированного сигнала, выделяя снова звуковой сигнал.

Когда мы разбирали вопрос прохождения света через ве­щество, мы предполагали, что вынужденные колебания зарядов пропорциональны электрическому полю света, т. е. мы брали линейную реакцию. Это действительно очень хорошее прибли­жение. Только в последние несколько лет были построены источ­ники света (лазеры), которые дают интенсивность, достаточную для наблюдения нелинейных эффектов. Теперь можно создавать гармоники световых частот. Если пропускать через кусок стекла сильный красный свет, то выходит он оттуда с неболь­шим добавком второй гармоники — голубого света!

* Ее можно вычислить следующим образом. Во-первых, заметим, что

Во-вторых, разложив подынтегральное выражение

в ряд, получим l/(1+x2)=l-x2+x4-x6+... . Интегрируя затем почленно этот ряд (от нуля до х), получаем arctgx:=l-х3/3+х5/5-x7/7+..., а поло­жив x=1, мы докажем использованный результат, поскольку