Выбрать главу

arctg1=p/4.

* В основе деления октавы на 12 ступеней лежит открытие Пифагора. Он брал струну, зажимал ее посредине и получал звук на октаву выше, нем звук незажатой струны. Затем половину струны он опять зажимал посредине и получал звук еще на октаву выше и т. д. Точно так же, за­жимая последовательно струну на 1/3 длины, он каждый раз получал звук выше на квинту. И вот оказалось, что 12 квинт почти точно уклады­ваются на интервале в 7 октав [т. е. 27~=(3/2)12]. Если же теперь от каждой квинты отложить целое число октав вверх и вниз, то каждая первона­чальная октава разделится на 12 частей. Так возник нифагорийский строй. Однако беда в том, что 12 квинт только приблизительно равны 7 октавам, поэтому в разных местах диапазона «лесенки» получались неровные. При развитии мелодии эти неточности накапливались и возникали про­тивные уху интервалы, так называемые «волки», которые страшно досаж­дали музыкантам. Иногда дело доходило до курьезов. Рассказывают, что известный композитор Жак Рамо сумел так ловко извлекать из органа «волчьи» звуки, что однажды, желая отказаться от должности церковного органиста, привел своей «игрой» в ужас святых отцов и убедил их в своей «бесталанности». Много сил было потрачено на изгнание «волков». Этим, в частности, безуспешно занимались такие умы, как Кеплер и Эйлер. Однако сделать это удалось не физику и не математику, а органисту Анд­рею Веркмейстеру. Решение его гениально просто: он отказался от чистых квинт, укоротив их как раз настолько, чтобы дюжина вместилась в 7 октав, и несовместимое совместилось, а «волки» исчезли. Так возник современный темперированный строй.— Прим. ред.

 

 

Глава 51

ВОЛНЫ

§ 1. Волна от движущегося предмета

§ 2. Ударные волны

§ 3. Волны в твердом теле

§ 4. Поверхностные волны

§ 1. Волна от движущегося предмета

Мы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных явлений, связанных с волнами; для подробного анализа они слишком сложны. Волнами мы занимаемся уже на протяжении нескольких глав, поэтому предмет настоящей главы было бы вер­нее назвать «некоторые из более сложных яв­лений, связанных с волнами».

Первым объектом нашего обсуждения будет эффект, производимый источником волн, дви­жущимся со скоростью, превышающей ско­рость распространения волн, т. е. быстрее их фазовой скорости. Рассмотрим сначала волны, которые, подобно звуку или свету, имеют опре­деленную постоянную скорость. Если источник звука движется со сверхзвуковой скоростью, то произойдет нечто вроде следующего. Пусть в данный момент источник, находящийся в точ­ке x1, порождает звуковую волну (фиг. 51.1), тогда в следующий момент источник переме­стится в точку х2, а волна из точки х1распро­странится в радиусе r1, который меньше расстоя­ния, пройденного источником, а из точки х2, разумеется, пойдет другая волна.

Фиг. 51.1. Фронт ударной волны, образующий конус с вершиной в источнике и углом полураствора q=arcsin(cw/v).

Когда источ­ник переместится еще дальше, в точку х3, и отсюда тоже пойдет волна, то волна из точки х2 распространится в радиусе r2, а волна из точ­ки х1в радиусе r3. Конечно, все это происхо­дит непрерывно, а не какими-то этапами, и по­этому получается целый ряд таких волновых колец с общей касательной линией, проходя­щей через центр источника. Мы видим, что источник, вместо того чтобы порождать сфери­ческие волны, как это произошло бы, будь он неподвижен, порождает фронт, образующий в трехмерном про­странстве конус или в двухмерном пару пересекающихся пря­мых линий. Из рисунка нетрудно найти угол между этими дву­мя линиями. За данный отрезок времени источник проходит расстояние, пропорциональное его скорости v, скажем х31 . Тем временем фронт волны распространится на расстояние r3, пропорциональное cwскорости волны. Ясно поэтому, что си­нус угла полураствора равен отношению скорости волны к ско­рости источника, а это может быть только тогда, когда cwмень­ше v, или скорость объекта больше скорости волны: